Undress-AI / app.py
nsfwalex's picture
Update app.py
cd18648 verified
raw
history blame
2.35 kB
from run import process
import time
import subprocess
import os
import argparse
import cv2
import sys
from PIL import Image
import torch
import gradio as gr
TESTdevice = "cpu"
index = 1
def mainTest(inputpath, outpath):
watermark = deep_nude_process(inputpath)
watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
return watermark1
def deep_nude_process(inputpath):
dress = cv2.imread(inputpath)
h = dress.shape[0]
w = dress.shape[1]
dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC)
watermark = process(dress)
watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC)
return watermark
def inference(img):
global index
bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
inputpath = f"input_{index}.jpg"
cv2.imwrite(inputpath, bgra)
outputpath = f"out_{index}.jpg"
index += 1
print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
output = mainTest(inputpath, outputpath)
print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
return output
title = "Undress AI"
description = "β›” Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 30 seconds for a picture. πŸ”ž Do not upload personal photos πŸ”ž There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to at least see the outline of a human body β›”"
examples = [
['input.png', 'Test'],
['input.jpg', 'Test'],
]
css = """
body {
background-color: rgb(17, 24, 39);
color: white;
}
.gradio-container {
background-color: rgb(17, 24, 39) !important;
border: none !important;
}
footer {display: none !important;}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", label="Upload Image")
process_button = gr.Button("Process Image")
with gr.Column():
for example in examples:
gr.Examples(examples=[example], inputs=image_input, examples_per_page=1)
def update_status(img):
processed_img = inference(img)
return processed_img
process_button.click(update_status, inputs=image_input, outputs=image_input)
demo.launch()