Undress-AI / app.py
nsfwalex's picture
Update app.py
5de4fd1 verified
raw
history blame
4.08 kB
from run import process
import time
import subprocess
import os
import argparse
import cv2
import sys
from PIL import Image
import torch
import gradio as gr
TESTdevice = "cpu"
index = 1
def mainTest(inputpath, outpath):
watermark = deep_nude_process(inputpath)
watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
return watermark1
def deep_nude_process(inputpath):
dress = cv2.imread(inputpath)
h = dress.shape[0]
w = dress.shape[1]
dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC)
watermark = process(dress)
watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC)
return watermark
def inference(img):
global index
bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
inputpath = f"input_{index}.jpg"
cv2.imwrite(inputpath, bgra)
outputpath = f"out_{index}.jpg"
index += 1
print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
output = mainTest(inputpath, outputpath)
print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
return output
from PIL import Image
def load_image_from_file(file_path, new_height=None):
"""
Load an image from a file and optionally resize it while maintaining the aspect ratio.
Args:
file_path (str): The path to the image file.
new_height (int, optional): The new height for the image. If None, the image is not resized.
Returns:
Image: The loaded (and optionally resized) image.
"""
try:
img = Image.open(file_path)
if new_height is not None:
# Calculate new width to maintain aspect ratio
aspect_ratio = img.width / img.height
new_width = int(new_height * aspect_ratio)
# Resize the image
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
except FileNotFoundError:
print(f"File not found: {file_path}")
return None
except Image.UnidentifiedImageError:
print(f"Cannot identify image file: {file_path}")
return None
except Exception as e:
print(f"Error loading image from file: {e}")
return None
title = "Undress AI"
description = "β›” Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 30 seconds for a picture. πŸ”ž Do not upload personal photos πŸ”ž There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to at least see the outline of a human body β›”"
examples = [
[load_image_from_file('example1.png')],
[load_image_from_file('example2.png')],
[load_image_from_file('example3.png')],
[load_image_from_file('example5.webp')],
[load_image_from_file('example6.webp')],
]
css = """
body {
background-color: rgb(3, 7, 18);
color: white;
}
.gradio-container {
background-color: rgb(3, 7, 18) !important;
border: none !important;
}
#example_img .hide-container{
height:100%;
width:50px;
transition: transform 0.5s ease;
}
#example_img{
width:50px;
height:100%;
}
#example_img img{
height:50px;
width:50px;
transition: transform 0.5s ease;
}
#example_img .container{
height:50px;
width:50px;
transition: transform 0.5s ease;
}
footer {display: none !important;}
"""
with gr.Blocks(css=css) as demo:
width=240
height=340
with gr.Row():
with gr.Column(min_width=240,scale=3): # Adjust scale for proper sizing
image_input = gr.Image(type="numpy", label="Upload Image", height=height)
with gr.Column(scale=1,min_width=50):
gr.Examples(examples=examples, inputs=image_input, examples_per_page=10, elem_id="example_img")
process_button = gr.Button("Nude!",size="sm")
def update_status(img):
processed_img = inference(img)
return processed_img
process_button.click(update_status, inputs=image_input, outputs=image_input)
demo.queue(max_size=10)
demo.launch()