Spaces:
Build error
Build error
from data_gen.tts.data_gen_utils import is_sil_phoneme | |
from resemblyzer import VoiceEncoder | |
from data_gen.tts.data_gen_utils import build_phone_encoder, build_word_encoder | |
from tasks.tts.dataset_utils import FastSpeechWordDataset | |
from tasks.tts.tts_utils import load_data_preprocessor | |
from vocoders.hifigan import HifiGanGenerator | |
from data_gen.tts.emotion import inference as EmotionEncoder | |
from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance | |
from data_gen.tts.emotion.inference import preprocess_wav | |
import importlib | |
import os | |
import librosa | |
import soundfile as sf | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
from string import punctuation | |
import torch | |
from utils import audio | |
from utils.ckpt_utils import load_ckpt | |
from utils.hparams import set_hparams | |
class BaseTTSInfer: | |
def __init__(self, hparams, device=None): | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.hparams = hparams | |
self.device = device | |
self.data_dir = hparams['binary_data_dir'] | |
self.preprocessor, self.preprocess_args = load_data_preprocessor() | |
self.ph_encoder, self.word_encoder = self.preprocessor.load_dict(self.data_dir) | |
self.spk_map = self.preprocessor.load_spk_map(self.data_dir) | |
self.ds_cls = FastSpeechWordDataset | |
self.model = self.build_model() | |
self.model.eval() | |
self.model.to(self.device) | |
self.vocoder = self.build_vocoder() | |
self.vocoder.eval() | |
self.vocoder.to(self.device) | |
self.asr_processor, self.asr_model = self.build_asr() | |
def build_model(self): | |
raise NotImplementedError | |
def forward_model(self, inp): | |
raise NotImplementedError | |
def build_asr(self): | |
# load pretrained model | |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") # facebook/wav2vec2-base-960h wav2vec2-large-960h-lv60-self | |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(self.device) | |
return processor, model | |
def build_vocoder(self): | |
base_dir = self.hparams['vocoder_ckpt'] | |
config_path = f'{base_dir}/config.yaml' | |
config = set_hparams(config_path, global_hparams=False) | |
vocoder = HifiGanGenerator(config) | |
load_ckpt(vocoder, base_dir, 'model_gen') | |
return vocoder | |
def run_vocoder(self, c): | |
c = c.transpose(2, 1) | |
y = self.vocoder(c)[:, 0] | |
return y | |
def preprocess_input(self, inp): | |
""" | |
:param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} | |
:return: | |
""" | |
# processed text | |
preprocessor, preprocess_args = self.preprocessor, self.preprocess_args | |
text_raw = inp['text'] | |
item_name = inp.get('item_name', '<ITEM_NAME>') | |
ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw, preprocess_args) | |
ph_token = self.ph_encoder.encode(ph) | |
# processed ref audio | |
ref_audio = inp['ref_audio'] | |
processed_ref_audio = 'example/temp.wav' | |
voice_encoder = VoiceEncoder().cuda() | |
encoder = [self.ph_encoder, self.word_encoder] | |
EmotionEncoder.load_model(self.hparams['emotion_encoder_path']) | |
binarizer_cls = self.hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') | |
pkg = ".".join(binarizer_cls.split(".")[:-1]) | |
cls_name = binarizer_cls.split(".")[-1] | |
binarizer_cls = getattr(importlib.import_module(pkg), cls_name) | |
ref_audio_raw, ref_text_raw = self.asr(ref_audio) # prepare text | |
ph_ref, txt_ref, word_ref, ph2word_ref, ph_gb_word_ref = preprocessor.txt_to_ph(preprocessor.txt_processor, ref_text_raw, preprocess_args) | |
ph_gb_word_nosil = ["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word_ref.split(" ") if not is_sil_phoneme(w)] | |
phs_for_align = ['SIL'] + ph_gb_word_nosil + ['SIL'] | |
phs_for_align = " ".join(phs_for_align) | |
# prepare files for alignment | |
os.system('rm -r example/; mkdir example/') | |
audio.save_wav(ref_audio_raw, processed_ref_audio, self.hparams['audio_sample_rate']) | |
with open(f'example/temp.lab', 'w') as f_txt: | |
f_txt.write(phs_for_align) | |
os.system(f'mfa align example/ {self.hparams["binary_data_dir"]}/mfa_dict.txt {self.hparams["binary_data_dir"]}/mfa_model.zip example/textgrid/ --clean') | |
item2tgfn = 'example/textgrid/temp.TextGrid' # prepare textgrid alignment | |
item = binarizer_cls.process_item(item_name, ph_ref, txt_ref, item2tgfn, processed_ref_audio, 0, 0, encoder, self.hparams['binarization_args']) | |
item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn'])) | |
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) | |
item.update({ | |
'ref_ph': item['ph'], | |
'ph': ph, | |
'ph_token': ph_token, | |
'text': txt | |
}) | |
return item | |
def input_to_batch(self, item): | |
item_names = [item['item_name']] | |
text = [item['text']] | |
ph = [item['ph']] | |
txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) | |
txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) | |
mels = torch.FloatTensor(item['mel'])[None, :].to(self.device) | |
f0 = torch.FloatTensor(item['f0'])[None, :].to(self.device) | |
# uv = torch.FloatTensor(item['uv']).to(self.device) | |
mel2ph = torch.LongTensor(item['mel2ph'])[None, :].to(self.device) | |
spk_embed = torch.FloatTensor(item['spk_embed'])[None, :].to(self.device) | |
emo_embed = torch.FloatTensor(item['emo_embed'])[None, :].to(self.device) | |
ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) | |
mel2word = torch.LongTensor(item['mel2word'])[None, :].to(self.device) | |
word_tokens = torch.LongTensor(item['word_tokens'])[None, :].to(self.device) | |
batch = { | |
'item_name': item_names, | |
'text': text, | |
'ph': ph, | |
'mels': mels, | |
'f0': f0, | |
'txt_tokens': txt_tokens, | |
'txt_lengths': txt_lengths, | |
'spk_embed': spk_embed, | |
'emo_embed': emo_embed, | |
'mel2ph': mel2ph, | |
'ph2word': ph2word, | |
'mel2word': mel2word, | |
'word_tokens': word_tokens, | |
} | |
return batch | |
def postprocess_output(self, output): | |
return output | |
def infer_once(self, inp): | |
inp = self.preprocess_input(inp) | |
output = self.forward_model(inp) | |
output = self.postprocess_output(output) | |
return output | |
def example_run(cls): | |
from utils.hparams import set_hparams | |
from utils.hparams import hparams as hp | |
from utils.audio import save_wav | |
set_hparams() | |
inp = { | |
'text': hp['text'], | |
'ref_audio': hp['ref_audio'] | |
} | |
infer_ins = cls(hp) | |
out = infer_ins.infer_once(inp) | |
os.makedirs('infer_out', exist_ok=True) | |
save_wav(out, f'infer_out/{hp["text"]}.wav', hp['audio_sample_rate']) | |
print(f'Save at infer_out/{hp["text"]}.wav.') | |
def asr(self, file): | |
sample_rate = self.hparams['audio_sample_rate'] | |
audio_input, source_sample_rate = sf.read(file) | |
# Resample the wav if needed | |
if sample_rate is not None and source_sample_rate != sample_rate: | |
audio_input = librosa.resample(audio_input, source_sample_rate, sample_rate) | |
# pad input values and return pt tensor | |
input_values = self.asr_processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values | |
# retrieve logits & take argmax | |
logits = self.asr_model(input_values.cuda()).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
# transcribe | |
transcription = self.asr_processor.decode(predicted_ids[0]) | |
transcription = transcription.rstrip(punctuation) | |
return audio_input, transcription |