|
from PIL import Image |
|
import requests |
|
import gradio as gr |
|
|
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
model_id = "Salesforce/blip-image-captioning-large" |
|
|
|
model = BlipForConditionalGeneration.from_pretrained(model_id) |
|
processor = BlipProcessor.from_pretrained(model_id) |
|
|
|
def launch(input): |
|
image = Image.open(requests.get(input, stream=True).raw).convert('RGB') |
|
inputs = processor(image, return_tensors="pt") |
|
out = model.generate(**inputs) |
|
return processor.decode(out[0], skip_special_tokens=True) |
|
|
|
iface = gr.Interface(launch, inputs="text", outputs="text") |
|
iface.launch() |