|
import json |
|
from dataclasses import dataclass |
|
from typing import Dict, List, Union |
|
|
|
import requests |
|
from bs4 import BeautifulSoup |
|
from openai import OpenAI |
|
|
|
|
|
@dataclass |
|
class TranscriptSegment: |
|
speaker_id: str |
|
start_time: float |
|
end_time: float |
|
text: str |
|
speaker_name: str = "" |
|
|
|
|
|
@dataclass |
|
class AudioSegment: |
|
id: int |
|
transcript: str |
|
start_time: float |
|
end_time: float |
|
speaker_label: str |
|
original_file: str |
|
items: List[int] |
|
|
|
|
|
class TranscriptProcessor: |
|
def __init__( |
|
self, |
|
transcript_file: str = None, |
|
transcript_data: Union[dict, list] = None, |
|
call_type: str = "le", |
|
person_names: list = None, |
|
): |
|
self.transcript_file = transcript_file |
|
self.transcript_data = transcript_data |
|
self.formatted_transcript = None |
|
self.segments = [] |
|
self.speaker_mapping = {} |
|
self.person_names = person_names |
|
|
|
if self.transcript_file: |
|
self._load_transcript() |
|
elif self.transcript_data: |
|
if call_type == "rp": |
|
self.merge_transcripts(transcript_data, person_names) |
|
else: |
|
raise ValueError( |
|
"Either transcript_file or transcript_data must be provided." |
|
) |
|
|
|
self._process_transcript() |
|
self._create_formatted_transcript() |
|
if call_type != "si" and call_type != "rp": |
|
self.map_speaker_ids_to_names() |
|
|
|
def _load_transcript(self) -> None: |
|
"""Load the transcript JSON file.""" |
|
with open(self.transcript_file, "r") as f: |
|
self.transcript_data = json.load(f) |
|
|
|
def _format_time(self, seconds: float) -> str: |
|
"""Convert seconds to formatted time string (MM:SS).""" |
|
minutes = int(seconds // 60) |
|
seconds = int(seconds % 60) |
|
return f"{minutes:02d}:{seconds:02d}" |
|
|
|
def _process_transcript(self) -> None: |
|
results = self.transcript_data["results"] |
|
current_words = [] |
|
current_speaker = None |
|
current_start = None |
|
current_items = [] |
|
|
|
for item in results["items"]: |
|
if item["type"] == "pronunciation": |
|
if not self.person_names: |
|
speaker = ( |
|
item.get("speaker_label", "") |
|
.replace("spk_", "") |
|
.replace("spk", "") |
|
) |
|
else: |
|
speaker = item.get("speaker_label", "") |
|
print("ITEM", item) |
|
|
|
|
|
if current_speaker is None: |
|
current_speaker = speaker |
|
current_start = float(item["start_time"]) |
|
|
|
|
|
if speaker != current_speaker: |
|
if current_items: |
|
self._create_segment( |
|
current_speaker, |
|
current_start, |
|
float(item["start_time"]), |
|
current_items, |
|
) |
|
current_items = [] |
|
current_words = [] |
|
current_speaker = speaker |
|
current_start = float(item["start_time"]) |
|
|
|
current_items.append(item) |
|
current_words.append(item["alternatives"][0]["content"]) |
|
elif item["type"] == "punctuation": |
|
current_items.append(item) |
|
|
|
if len(current_words) >= 20: |
|
|
|
next_item = next( |
|
( |
|
it |
|
for it in results["items"][ |
|
results["items"].index(item) + 1 : |
|
] |
|
if it["type"] == "pronunciation" |
|
), |
|
None, |
|
) |
|
if next_item: |
|
self._create_segment( |
|
current_speaker, |
|
current_start, |
|
float(next_item["start_time"]), |
|
current_items, |
|
) |
|
current_items = [] |
|
current_words = [] |
|
current_start = float(next_item["start_time"]) |
|
|
|
|
|
if current_items: |
|
last_time = max( |
|
float(item["end_time"]) |
|
for item in current_items |
|
if item["type"] == "pronunciation" |
|
) |
|
self._create_segment( |
|
current_speaker, current_start, last_time, current_items |
|
) |
|
|
|
def _create_segment( |
|
self, speaker_id: str, start: float, end: float, items: list |
|
) -> None: |
|
segment_content = [] |
|
for item in items: |
|
if item["type"] == "pronunciation": |
|
segment_content.append(item["alternatives"][0]["content"]) |
|
elif item["type"] == "punctuation": |
|
|
|
if segment_content: |
|
segment_content[-1] += item["alternatives"][0]["content"] |
|
|
|
if segment_content: |
|
self.segments.append( |
|
TranscriptSegment( |
|
speaker_id=speaker_id, |
|
start_time=start, |
|
end_time=end, |
|
text=" ".join(segment_content), |
|
) |
|
) |
|
|
|
def correct_speaker_mapping_with_agenda(self, url: str) -> None: |
|
"""Fetch agenda from a URL and correct the speaker mapping using OpenAI.""" |
|
try: |
|
if not url.startswith("http"): |
|
|
|
url = "https://" + url |
|
|
|
response = requests.get(url) |
|
response.raise_for_status() |
|
html_content = response.text |
|
|
|
|
|
soup = BeautifulSoup(html_content, "html.parser") |
|
description_tag = soup.find( |
|
"script", {"type": "application/ld+json"} |
|
) |
|
agenda = "" |
|
|
|
if description_tag: |
|
|
|
json_data = json.loads(description_tag.string) |
|
if "description" in json_data: |
|
agenda = json_data["description"] |
|
else: |
|
print("Agenda description not found in the JSON metadata.") |
|
else: |
|
print("No structured data (ld+json) found.") |
|
|
|
if not agenda: |
|
print("No agenda found in the structured metadata. Trying meta tags.") |
|
|
|
|
|
meta_description = soup.find("meta", {"name": "description"}) |
|
agenda = meta_description["content"] if meta_description else "" |
|
|
|
if not agenda: |
|
print("No agenda found in any description tags.") |
|
return |
|
|
|
prompt = ( |
|
f"Given the original speaker mapping {self.speaker_mapping}, agenda:\n{agenda}, and the transcript: {self.formatted_transcript}\n\n" |
|
"Some speaker names in the mapping might have spelling errors or be incomplete." |
|
"Remember that the content in agenda is accurate and transcript can have errors so prioritize the spellings and names in the agenda content." |
|
"If the speaker name and introduction is similar to the agenda, update the speaker name in the mapping." |
|
"Please correct the names based on the agenda. Return the corrected mapping in JSON format as " |
|
"{'spk_0': 'Correct Name', 'spk_1': 'Correct Name', ...}." |
|
"You should only update the name if the name sounds very similar, or there is a good spelling overlap/ The Speaker Introduction matches the description of the Talk from Agends. If the name is totally unrelated, keep the original name." |
|
"You should always include all the speakers in the mapping from the original mapping, even if you don't update their names. i.e if there are 4 speakers in original mapping, new mapping should have 4 speakers always, ignore all the other spekaers in the agenda. I REPEAT DO NOT ADD OTHER NEW SPEAKERS IN THE MAPPING." |
|
) |
|
|
|
client = OpenAI() |
|
|
|
completion = client.chat.completions.create( |
|
model="gpt-4o-mini", |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful assistant. Who analyzes the given transcript, original speaker mapping and agenda. From the Agenda, you fix the spelling mistakes in the speaker names or update the names if they are similar to the agenda. You should only update the name if the name sounds very similar, or there is a good spelling overlap/ The Speaker Introduction matches the description of the Talk from Agends. If the name is totally unrelated, keep the original name.", |
|
}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
temperature=0, |
|
) |
|
|
|
response_text = completion.choices[0].message.content.strip() |
|
try: |
|
corrected_mapping = json.loads(response_text) |
|
except Exception: |
|
response_text = response_text[ |
|
response_text.find("{") : response_text.rfind("}") + 1 |
|
] |
|
try: |
|
corrected_mapping = json.loads(response_text) |
|
except json.JSONDecodeError: |
|
print( |
|
"Error parsing corrected speaker mapping JSON, keeping the original mapping." |
|
) |
|
corrected_mapping = self.speaker_mapping |
|
|
|
self.speaker_mapping = corrected_mapping |
|
|
|
|
|
for segment in self.segments: |
|
spk_id = f"spk_{segment.speaker_id}" |
|
segment.speaker_name = self.speaker_mapping.get(spk_id, spk_id) |
|
|
|
|
|
formatted_segments = [] |
|
for seg in self.segments: |
|
start_time_str = self._format_time(seg.start_time) |
|
end_time_str = self._format_time(seg.end_time) |
|
formatted_segments.append( |
|
f"time_stamp: {start_time_str}-{end_time_str}\n" |
|
f"{seg.speaker_name}: {seg.text}\n" |
|
) |
|
self.formatted_transcript = "\n".join(formatted_segments) |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f" ching agenda from URL: {str(e)}") |
|
except Exception as e: |
|
print(f"Error correcting speaker mapping: {str(e)}") |
|
|
|
def _create_formatted_transcript(self) -> None: |
|
"""Create formatted transcript with default speaker labels.""" |
|
formatted_segments = [] |
|
for seg in self.segments: |
|
start_time_str = self._format_time(seg.start_time) |
|
end_time_str = self._format_time(seg.end_time) |
|
|
|
if not self.person_names: |
|
speaker_label = f"spk_{seg.speaker_id}" |
|
else: |
|
speaker_label = f"{seg.speaker_id}" |
|
formatted_segments.append( |
|
f"time_stamp: {start_time_str}-{end_time_str}\n" |
|
f"{speaker_label}: {seg.text}\n" |
|
) |
|
self.formatted_transcript = "\n".join(formatted_segments) |
|
|
|
def map_speaker_ids_to_names(self) -> None: |
|
"""Map speaker IDs to names based on introductions in the transcript.""" |
|
try: |
|
transcript = self.formatted_transcript |
|
|
|
prompt = ( |
|
"Given the following transcript where speakers are identified as spk 0, spk 1, spk 2, etc., please map each spk ID to the speaker's name based on their introduction in the transcript. If no name is introduced for a speaker, keep it as spk_id. Return the mapping as a JSON object in the format {'spk_0': 'Speaker Name', 'spk_1': 'Speaker Name', ...}\n\n" |
|
f"Transcript:\n{transcript}" |
|
) |
|
|
|
client = OpenAI() |
|
|
|
completion = client.chat.completions.create( |
|
model="gpt-4o", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
temperature=0, |
|
) |
|
|
|
response_text = completion.choices[0].message.content.strip() |
|
try: |
|
self.speaker_mapping = json.loads(response_text) |
|
except json.JSONDecodeError: |
|
response_text = response_text[ |
|
response_text.find("{") : response_text.rfind("}") + 1 |
|
] |
|
try: |
|
self.speaker_mapping = json.loads(response_text) |
|
except json.JSONDecodeError: |
|
print("Error parsing speaker mapping JSON.") |
|
self.speaker_mapping = {} |
|
|
|
|
|
for segment in self.segments: |
|
spk_id = f"spk_{segment.speaker_id}" |
|
speaker_name = self.speaker_mapping.get(spk_id, spk_id) |
|
segment.speaker_name = speaker_name |
|
|
|
self._create_formatted_transcript_with_names() |
|
|
|
except Exception as e: |
|
print(f"Error mapping speaker IDs to names: {str(e)}") |
|
self.speaker_mapping = {} |
|
|
|
def _create_formatted_transcript_with_names(self) -> None: |
|
"""Create formatted transcript with mapped speaker names.""" |
|
formatted_segments = [] |
|
for seg in self.segments: |
|
start_time_str = self._format_time(seg.start_time) |
|
end_time_str = self._format_time(seg.end_time) |
|
speaker_name = getattr(seg, "speaker_name", f"spk_{seg.speaker_id}") |
|
formatted_segments.append( |
|
f"Start Time: {start_time_str} - End Time: {end_time_str}\n" |
|
f"{speaker_name}: {seg.text}\n" |
|
) |
|
self.formatted_transcript = "\n".join(formatted_segments) |
|
|
|
def get_transcript(self) -> str: |
|
"""Return the formatted transcript with speaker names.""" |
|
return self.formatted_transcript |
|
|
|
def get_transcript_data(self) -> Dict: |
|
"""Return the raw transcript data.""" |
|
return self.transcript_data |
|
|
|
def merge_transcripts( |
|
self, transcript_files: List[Dict], person_names: List[str] |
|
) -> None: |
|
""" |
|
Merge multiple AWS diarized transcripts while maintaining correct time ordering. |
|
Each transcript is assumed to have one speaker (spk_0) and person_names list index |
|
corresponds to transcript file index. |
|
""" |
|
print(person_names) |
|
if len(transcript_files) != len(person_names): |
|
raise ValueError("Number of transcripts must match number of speaker names") |
|
|
|
|
|
merged_transcript = { |
|
"jobName": "merged_transcript", |
|
"status": "COMPLETED", |
|
"results": { |
|
"audio_segments": [], |
|
"items": [], |
|
"speaker_labels": {"segments": [], "speakers": len(transcript_files)}, |
|
}, |
|
} |
|
|
|
|
|
all_items = [] |
|
for file_idx, transcript in enumerate(transcript_files): |
|
items = transcript["results"].get("items", []) |
|
speaker_name = person_names[file_idx] |
|
|
|
for item in items: |
|
|
|
item_data = dict(item) |
|
|
|
item_data["speaker_label"] = speaker_name |
|
item_data["file_idx"] = file_idx |
|
item_data["original_id"] = item["id"] |
|
item_data["start_time"] = float(item.get("start_time", 0)) |
|
item_data["end_time"] = float(item.get("end_time", 0)) |
|
all_items.append(item_data) |
|
|
|
|
|
all_items.sort(key=lambda x: (x["start_time"], x["end_time"])) |
|
|
|
|
|
item_id_mapping = {} |
|
|
|
|
|
for new_id, item in enumerate(all_items): |
|
file_idx = item.pop("file_idx") |
|
original_id = item.pop("original_id") |
|
item_id_mapping[(file_idx, original_id)] = new_id |
|
|
|
|
|
item["id"] = new_id |
|
item["start_time"] = str(item["start_time"]) |
|
item["end_time"] = str(item["end_time"]) |
|
|
|
merged_transcript["results"]["items"].append(item) |
|
|
|
|
|
all_segments = [] |
|
for file_idx, transcript in enumerate(transcript_files): |
|
file_segments = transcript["results"].get("audio_segments", []) |
|
speaker_name = person_names[file_idx] |
|
|
|
for segment in file_segments: |
|
|
|
new_items = [ |
|
item_id_mapping[(file_idx, item_id)] |
|
for item_id in segment.get("items", []) |
|
] |
|
|
|
all_segments.append( |
|
AudioSegment( |
|
id=len(all_segments), |
|
transcript=segment["transcript"], |
|
start_time=float(segment["start_time"]), |
|
end_time=float(segment["end_time"]), |
|
speaker_label=speaker_name, |
|
original_file=f"file_{file_idx}", |
|
items=new_items, |
|
) |
|
) |
|
|
|
|
|
sorted_segments = sorted(all_segments, key=lambda x: x.start_time) |
|
|
|
|
|
for idx, segment in enumerate(sorted_segments): |
|
merged_segment = { |
|
"id": idx, |
|
"transcript": segment.transcript, |
|
"start_time": str(segment.start_time), |
|
"end_time": str(segment.end_time), |
|
"speaker_label": segment.speaker_label, |
|
"source_file": segment.original_file, |
|
"items": sorted(segment.items), |
|
} |
|
merged_transcript["results"]["audio_segments"].append(merged_segment) |
|
|
|
|
|
speaker_segment = { |
|
"start_time": str(segment.start_time), |
|
"end_time": str(segment.end_time), |
|
"speaker_label": segment.speaker_label, |
|
} |
|
merged_transcript["results"]["speaker_labels"]["segments"].append( |
|
speaker_segment |
|
) |
|
|
|
|
|
self.transcript_data = merged_transcript |
|
|