embeddings / app.py
RohanSardar's picture
Update app.py
75d2690 verified
raw
history blame contribute delete
735 Bytes
import streamlit as st
from transformers import AutoModel, AutoTokenizer
import torch
model_name = "sentence-transformers/all-MiniLM-L6-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def get_embedding(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings
st.title("Text Embedding with all-MiniLM-L6-v2")
st.write("Enter text to get its embedding:")
input_text = st.text_input("Input Text", "")
if input_text:
embedding = get_embedding(input_text)
st.write("Embedding:")
st.write(embedding)