Spaces:
Sleeping
Sleeping
import pickle | |
import pandas as pd | |
import numpy | |
#import logging, os | |
#logging.disable(logging.WARNING) | |
#os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
import tensorflow as tf | |
import tensorflow_text as tf_text | |
from metaphone import doublemetaphone | |
import re | |
with open('vocab_data.pkl', 'rb') as fp: | |
hin_vocab = pickle.load(fp) | |
vocab_keys=[l for l in hin_vocab] | |
#all_data_vocab_53k_mixed_batch_v2 | |
reloaded = tf.saved_model.load("translator") | |
def t_text(line): | |
line=re.sub("[.!?\\-\'\"]", "",line).lower().strip() | |
string='' | |
for j in line.split(' '): | |
if doublemetaphone(j)[0]+'*'+doublemetaphone(j[::-1])[0]+'*'+j[:2]+'*'+j[len(j)-1:] in vocab_keys: | |
string=string+list(hin_vocab[doublemetaphone(j)[0]+'*'+doublemetaphone(j[::-1])[0]+'*'+j[:2]+'*'+j[len(j)-1:]])[0]+' ' | |
else: | |
string=string+j+' ' | |
return string.lower().strip() | |
def outcome(input): | |
trans_text=t_text(input) | |
result=reloaded.tf_translate(tf.constant([trans_text]))['text'][0].numpy().decode() | |
return result | |
#print(outcome("Please timer ko rokey")) |