Update app.py
Browse files
app.py
CHANGED
|
@@ -11,20 +11,19 @@ from pytorch_grad_cam.utils.image import show_cam_on_image
|
|
| 11 |
import os
|
| 12 |
import datetime
|
| 13 |
|
|
|
|
| 14 |
# Setup
|
|
|
|
| 15 |
device = torch.device("cpu")
|
| 16 |
save_dir = "/home/user/app/saved_predictions"
|
| 17 |
-
if not os.path.exists(save_dir):
|
| 18 |
-
os.makedirs(save_dir)
|
| 19 |
-
print("📁 Folder created:", save_dir)
|
| 20 |
os.makedirs(save_dir, exist_ok=True)
|
| 21 |
|
| 22 |
-
|
| 23 |
# Placeholder image for invalid uploads
|
| 24 |
invalid_img = Image.new("RGB", (224, 224), color=(200, 200, 200))
|
| 25 |
|
| 26 |
-
|
| 27 |
# Load model
|
|
|
|
| 28 |
model = models.resnet50(weights=None)
|
| 29 |
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
| 30 |
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device))
|
|
@@ -43,6 +42,9 @@ transform = transforms.Compose([
|
|
| 43 |
[0.229, 0.224, 0.225])
|
| 44 |
])
|
| 45 |
|
|
|
|
|
|
|
|
|
|
| 46 |
def looks_like_fundus(image):
|
| 47 |
"""
|
| 48 |
Basic heuristic to check if an image is likely a retinal fundus scan.
|
|
@@ -56,6 +58,9 @@ def looks_like_fundus(image):
|
|
| 56 |
# Fundus images usually occupy ~40–75% of the area
|
| 57 |
return 0.40 < white_ratio < 0.75
|
| 58 |
|
|
|
|
|
|
|
|
|
|
| 59 |
def predict_retinopathy(image):
|
| 60 |
# Validate image first
|
| 61 |
if not looks_like_fundus(image):
|
|
@@ -80,7 +85,10 @@ def predict_retinopathy(image):
|
|
| 80 |
# Grad-CAM
|
| 81 |
rgb_img_np = np.array(img).astype(np.float32) / 255.0
|
| 82 |
rgb_img_np = np.ascontiguousarray(rgb_img_np)
|
| 83 |
-
grayscale_cam = cam(
|
|
|
|
|
|
|
|
|
|
| 84 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
| 85 |
cam_pil = Image.fromarray(cam_image)
|
| 86 |
|
|
@@ -88,12 +96,14 @@ def predict_retinopathy(image):
|
|
| 88 |
filename = f"{timestamp}_{label}_{confidence:.2f}.png"
|
| 89 |
cam_pil.save(os.path.join(save_dir, filename))
|
| 90 |
|
| 91 |
-
|
| 92 |
cam_pil,
|
| 93 |
f"{label} (Confidence: {confidence:.2f})"
|
| 94 |
)
|
| 95 |
|
|
|
|
| 96 |
# Gradio app
|
|
|
|
| 97 |
gr.Interface(
|
| 98 |
fn=predict_retinopathy,
|
| 99 |
inputs=gr.Image(type="pil", label="Upload Retinal Image"),
|
|
@@ -107,8 +117,7 @@ gr.Interface(
|
|
| 107 |
"Upload an image to classify DR and visualise the Grad-CAM heatmap showing important regions."
|
| 108 |
),
|
| 109 |
article=(
|
| 110 |
-
"⚕️ **OpthaDetect** is an AI-powered ophthalmic
|
| 111 |
"It highlights retinal risk regions using Grad-CAM for better clinical interpretability."
|
| 112 |
)
|
| 113 |
).launch()
|
| 114 |
-
|
|
|
|
| 11 |
import os
|
| 12 |
import datetime
|
| 13 |
|
| 14 |
+
# -----------------------
|
| 15 |
# Setup
|
| 16 |
+
# -----------------------
|
| 17 |
device = torch.device("cpu")
|
| 18 |
save_dir = "/home/user/app/saved_predictions"
|
|
|
|
|
|
|
|
|
|
| 19 |
os.makedirs(save_dir, exist_ok=True)
|
| 20 |
|
|
|
|
| 21 |
# Placeholder image for invalid uploads
|
| 22 |
invalid_img = Image.new("RGB", (224, 224), color=(200, 200, 200))
|
| 23 |
|
| 24 |
+
# -----------------------
|
| 25 |
# Load model
|
| 26 |
+
# -----------------------
|
| 27 |
model = models.resnet50(weights=None)
|
| 28 |
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
| 29 |
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device))
|
|
|
|
| 42 |
[0.229, 0.224, 0.225])
|
| 43 |
])
|
| 44 |
|
| 45 |
+
# -----------------------
|
| 46 |
+
# Helper: basic fundus check
|
| 47 |
+
# -----------------------
|
| 48 |
def looks_like_fundus(image):
|
| 49 |
"""
|
| 50 |
Basic heuristic to check if an image is likely a retinal fundus scan.
|
|
|
|
| 58 |
# Fundus images usually occupy ~40–75% of the area
|
| 59 |
return 0.40 < white_ratio < 0.75
|
| 60 |
|
| 61 |
+
# -----------------------
|
| 62 |
+
# Predict and save
|
| 63 |
+
# -----------------------
|
| 64 |
def predict_retinopathy(image):
|
| 65 |
# Validate image first
|
| 66 |
if not looks_like_fundus(image):
|
|
|
|
| 85 |
# Grad-CAM
|
| 86 |
rgb_img_np = np.array(img).astype(np.float32) / 255.0
|
| 87 |
rgb_img_np = np.ascontiguousarray(rgb_img_np)
|
| 88 |
+
grayscale_cam = cam(
|
| 89 |
+
input_tensor=img_tensor,
|
| 90 |
+
targets=[ClassifierOutputTarget(pred)]
|
| 91 |
+
)[0]
|
| 92 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
| 93 |
cam_pil = Image.fromarray(cam_image)
|
| 94 |
|
|
|
|
| 96 |
filename = f"{timestamp}_{label}_{confidence:.2f}.png"
|
| 97 |
cam_pil.save(os.path.join(save_dir, filename))
|
| 98 |
|
| 99 |
+
return (
|
| 100 |
cam_pil,
|
| 101 |
f"{label} (Confidence: {confidence:.2f})"
|
| 102 |
)
|
| 103 |
|
| 104 |
+
# -----------------------
|
| 105 |
# Gradio app
|
| 106 |
+
# -----------------------
|
| 107 |
gr.Interface(
|
| 108 |
fn=predict_retinopathy,
|
| 109 |
inputs=gr.Image(type="pil", label="Upload Retinal Image"),
|
|
|
|
| 117 |
"Upload an image to classify DR and visualise the Grad-CAM heatmap showing important regions."
|
| 118 |
),
|
| 119 |
article=(
|
| 120 |
+
"⚕️ **OpthaDetect** is an AI-powered ophthalmic decision-support tool. "
|
| 121 |
"It highlights retinal risk regions using Grad-CAM for better clinical interpretability."
|
| 122 |
)
|
| 123 |
).launch()
|
|
|