Rocky080808's picture
Update app.py
d232501 verified
# V3
# Improve speed and user experience
import streamlit as st
from transformers import pipeline
from langdetect import detect
# 加载翻译 pipeline
@st.cache_resource
def load_translation_pipeline():
return pipeline("translation", model="facebook/m2m100_418M", max_length=256)
# 加载情感分析 pipeline
@st.cache_resource
def load_sentiment_pipeline():
return pipeline("sentiment-analysis", model="Rocky080808/finetuned-distilbert-base-uncased-finetuned-sst-2-english", max_length=256)
# 定义语言映射
language_name_map = {
'en': "English",
'zh-cn': "Chinese (Simplified)",
'zh-tw': "Chinese (Traditional)",
'ja': "Japanese",
'de': "German",
'es': "Spanish",
'fr': "French"
}
# 翻译到英语的函数
def translate_to_english(text, translation_pipeline):
detected_language = detect(text)
# 语言映射
language_map = {
'en': "en", # 英语直接通过
'zh-cn': "zh", # Simplified Chinese
'zh-tw': "zh", # Traditional Chinese
'ja': "ja", # Japanese
'de': "de", # German
'es': "es", # Spanish
'fr': "fr" # French
}
if detected_language not in language_map:
return None, "Unsupported language"
# 如果检测到是英语,直接返回原文本
if detected_language == 'en':
return text, "en"
# 翻译为英语
translated_text = translation_pipeline(text, src_lang=language_map[detected_language], tgt_lang="en")
return translated_text[0]['translation_text'], language_name_map.get(detected_language, detected_language)
# 主程序逻辑
def main():
# 加载翻译和情感分析模型
translation_pipeline = load_translation_pipeline()
sentiment_pipeline = load_sentiment_pipeline()
st.title("Global Customer Reviews Sentiment Analyzer")
st.write("Analyze customer sentiment by their reviews. Please input the customer reviews to get the sentiment analysis result.")
st.write("Support 6 languages: English, Chinese, Japanese, German, Spanish and French.")
st.write("For example, by inputting: I like the product very much!")
st.write("The application will tell you: Very satisfied, the customer is very likely to return and recommend.")
user_input = st.text_input("Enter customer reviews here and press Analyze:")
# 用户点击分析按钮后触发
if st.button("Analyze"):
if user_input:
# 翻译或直接处理英语
translated_text, detected_language = translate_to_english(user_input, translation_pipeline)
if detected_language == "Unsupported language":
st.write("The input language is not supported. Please use Chinese, Japanese, German, Spanish, or French.")
else:
# 显示检测语言和翻译结果(如果需要翻译)
st.write(f"Detected language: {language_name_map.get(detected_language, detected_language)}")
st.write(f"Translated Text: {translated_text}" if detected_language != "English" else f"Original Text: {translated_text}")
# 情感分析
result = sentiment_pipeline(translated_text)
label_str = result[0]["label"]
label = int(label_str.split("_")[-1])
confidence = result[0]["score"]
# 情感结果映射
label_to_text = {
0: "Very dissatisfied, immediate follow-up is required.",
1: "Dissatisfied, please arrange follow-up.",
2: "Neutral sentiment, further case analysis is needed.",
3: "Satisfied, the customer may return for a purchase.",
4: "Very satisfied, the customer is very likely to return and recommend."
}
sentiment_text = label_to_text.get(label, "Unrecognized sentiment")
st.write(f"Sentiment Analysis Result: {sentiment_text}")
# st.write(f"Confidence Score: {confidence:.2f}")
if __name__ == "__main__":
main()