Spaces:
Sleeping
Sleeping
# V3 | |
# Improve speed and user experience | |
import streamlit as st | |
from transformers import pipeline | |
from langdetect import detect | |
# 加载翻译 pipeline | |
def load_translation_pipeline(): | |
return pipeline("translation", model="facebook/m2m100_418M", max_length=256) | |
# 加载情感分析 pipeline | |
def load_sentiment_pipeline(): | |
return pipeline("sentiment-analysis", model="Rocky080808/finetuned-distilbert-base-uncased-finetuned-sst-2-english", max_length=256) | |
# 定义语言映射 | |
language_name_map = { | |
'en': "English", | |
'zh-cn': "Chinese (Simplified)", | |
'zh-tw': "Chinese (Traditional)", | |
'ja': "Japanese", | |
'de': "German", | |
'es': "Spanish", | |
'fr': "French" | |
} | |
# 翻译到英语的函数 | |
def translate_to_english(text, translation_pipeline): | |
detected_language = detect(text) | |
# 语言映射 | |
language_map = { | |
'en': "en", # 英语直接通过 | |
'zh-cn': "zh", # Simplified Chinese | |
'zh-tw': "zh", # Traditional Chinese | |
'ja': "ja", # Japanese | |
'de': "de", # German | |
'es': "es", # Spanish | |
'fr': "fr" # French | |
} | |
if detected_language not in language_map: | |
return None, "Unsupported language" | |
# 如果检测到是英语,直接返回原文本 | |
if detected_language == 'en': | |
return text, "en" | |
# 翻译为英语 | |
translated_text = translation_pipeline(text, src_lang=language_map[detected_language], tgt_lang="en") | |
return translated_text[0]['translation_text'], language_name_map.get(detected_language, detected_language) | |
# 主程序逻辑 | |
def main(): | |
# 加载翻译和情感分析模型 | |
translation_pipeline = load_translation_pipeline() | |
sentiment_pipeline = load_sentiment_pipeline() | |
st.title("Global Customer Reviews Sentiment Analyzer") | |
st.write("Analyze customer sentiment by their reviews. Please input the customer reviews to get the sentiment analysis result.") | |
st.write("Support 6 languages: English, Chinese, Japanese, German, Spanish and French.") | |
st.write("For example, by inputting: I like the product very much!") | |
st.write("The application will tell you: Very satisfied, the customer is very likely to return and recommend.") | |
user_input = st.text_input("Enter customer reviews here and press Analyze:") | |
# 用户点击分析按钮后触发 | |
if st.button("Analyze"): | |
if user_input: | |
# 翻译或直接处理英语 | |
translated_text, detected_language = translate_to_english(user_input, translation_pipeline) | |
if detected_language == "Unsupported language": | |
st.write("The input language is not supported. Please use Chinese, Japanese, German, Spanish, or French.") | |
else: | |
# 显示检测语言和翻译结果(如果需要翻译) | |
st.write(f"Detected language: {language_name_map.get(detected_language, detected_language)}") | |
st.write(f"Translated Text: {translated_text}" if detected_language != "English" else f"Original Text: {translated_text}") | |
# 情感分析 | |
result = sentiment_pipeline(translated_text) | |
label_str = result[0]["label"] | |
label = int(label_str.split("_")[-1]) | |
confidence = result[0]["score"] | |
# 情感结果映射 | |
label_to_text = { | |
0: "Very dissatisfied, immediate follow-up is required.", | |
1: "Dissatisfied, please arrange follow-up.", | |
2: "Neutral sentiment, further case analysis is needed.", | |
3: "Satisfied, the customer may return for a purchase.", | |
4: "Very satisfied, the customer is very likely to return and recommend." | |
} | |
sentiment_text = label_to_text.get(label, "Unrecognized sentiment") | |
st.write(f"Sentiment Analysis Result: {sentiment_text}") | |
# st.write(f"Confidence Score: {confidence:.2f}") | |
if __name__ == "__main__": | |
main() | |