Spaces:
Running
Running
time series for gradio
Browse files- .gitignore +2 -1
- app.py +16 -4
- debug.ipynb +22 -0
- img/pm25_forecast.png +0 -0
- infer.py +52 -2
- scheduler.py +7 -0
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
.venv
|
2 |
.env
|
3 |
-
.cache.sqlite
|
|
|
|
1 |
.venv
|
2 |
.env
|
3 |
+
.cache.sqlite
|
4 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,8 +1,20 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
now = datetime.now()
|
8 |
|
9 |
+
df = pd.DataFrame({
|
10 |
+
'time': [now - timedelta(minutes=5*i) for i in range(25)],
|
11 |
+
'price': np.random.randint(100, 1000, 25),
|
12 |
+
'origin': [random.choice(["DFW", "DAL", "HOU"]) for _ in range(25)],
|
13 |
+
'destination': [random.choice(["JFK", "LGA", "EWR"]) for _ in range(25)],
|
14 |
+
})
|
15 |
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
gr.LinePlot(df, x="time", y="price")
|
18 |
+
gr.ScatterPlot(df, x="time", y="price", color="origin")
|
19 |
+
|
20 |
+
demo.launch()
|
debug.ipynb
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"vscode": {
|
8 |
+
"languageId": "plaintext"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"outputs": [],
|
12 |
+
"source": []
|
13 |
+
}
|
14 |
+
],
|
15 |
+
"metadata": {
|
16 |
+
"language_info": {
|
17 |
+
"name": "python"
|
18 |
+
}
|
19 |
+
},
|
20 |
+
"nbformat": 4,
|
21 |
+
"nbformat_minor": 2
|
22 |
+
}
|
img/pm25_forecast.png
ADDED
infer.py
CHANGED
@@ -14,6 +14,11 @@ project_name = os.getenv('HOPSWORKS_PROJECT')
|
|
14 |
project = hopsworks.login(project=project_name, api_key_value=api_key)
|
15 |
fs = project.get_feature_store()
|
16 |
secrets = util.secrets_api(project.name)
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
AQI_API_KEY = secrets.get_secret("AQI_API_KEY").value
|
19 |
location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value
|
@@ -26,7 +31,7 @@ feature_view = fs.get_feature_view(
|
|
26 |
version=1,
|
27 |
)
|
28 |
|
29 |
-
|
30 |
|
31 |
mr = project.get_model_registry()
|
32 |
|
@@ -39,7 +44,7 @@ saved_model_dir = retrieved_model.download()
|
|
39 |
retrieved_xgboost_model = XGBRegressor()
|
40 |
retrieved_xgboost_model.load_model(saved_model_dir + "/model.json")
|
41 |
|
42 |
-
|
43 |
|
44 |
weather_fg = fs.get_feature_group(
|
45 |
name='weather',
|
@@ -48,5 +53,50 @@ weather_fg = fs.get_feature_group(
|
|
48 |
|
49 |
today_timestamp = pd.to_datetime(today)
|
50 |
batch_data = weather_fg.filter(weather_fg.date >= today_timestamp ).read()
|
|
|
|
|
|
|
|
|
51 |
batch_data['predicted_pm25'] = retrieved_xgboost_model.predict(
|
52 |
batch_data[['temperature_2m_mean', 'precipitation_sum', 'wind_speed_10m_max', 'wind_direction_10m_dominant']])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
project = hopsworks.login(project=project_name, api_key_value=api_key)
|
15 |
fs = project.get_feature_store()
|
16 |
secrets = util.secrets_api(project.name)
|
17 |
+
location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value
|
18 |
+
location = json.loads(location_str)
|
19 |
+
country=location['country']
|
20 |
+
city=location['city']
|
21 |
+
street=location['street']
|
22 |
|
23 |
AQI_API_KEY = secrets.get_secret("AQI_API_KEY").value
|
24 |
location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value
|
|
|
31 |
version=1,
|
32 |
)
|
33 |
|
34 |
+
### Retreive model
|
35 |
|
36 |
mr = project.get_model_registry()
|
37 |
|
|
|
44 |
retrieved_xgboost_model = XGBRegressor()
|
45 |
retrieved_xgboost_model.load_model(saved_model_dir + "/model.json")
|
46 |
|
47 |
+
### Retrieve features
|
48 |
|
49 |
weather_fg = fs.get_feature_group(
|
50 |
name='weather',
|
|
|
53 |
|
54 |
today_timestamp = pd.to_datetime(today)
|
55 |
batch_data = weather_fg.filter(weather_fg.date >= today_timestamp ).read()
|
56 |
+
|
57 |
+
|
58 |
+
### Predict and upload
|
59 |
+
|
60 |
batch_data['predicted_pm25'] = retrieved_xgboost_model.predict(
|
61 |
batch_data[['temperature_2m_mean', 'precipitation_sum', 'wind_speed_10m_max', 'wind_direction_10m_dominant']])
|
62 |
+
|
63 |
+
batch_data['street'] = street
|
64 |
+
batch_data['city'] = city
|
65 |
+
batch_data['country'] = country
|
66 |
+
# Fill in the number of days before the date on which you made the forecast (base_date)
|
67 |
+
batch_data['days_before_forecast_day'] = range(1, len(batch_data)+1)
|
68 |
+
batch_data = batch_data.sort_values(by=['date'])
|
69 |
+
#batch_data['date'] = batch_data['date'].dt.tz_convert(None).astype('datetime64[ns]')
|
70 |
+
|
71 |
+
plt = util.plot_air_quality_forecast(city, street, batch_data, file_path="./img/pm25_forecast.png")
|
72 |
+
|
73 |
+
monitor_fg = fs.get_or_create_feature_group(
|
74 |
+
name='aq_predictions',
|
75 |
+
description='Air Quality prediction monitoring',
|
76 |
+
version=1,
|
77 |
+
primary_key=['city','street','date','days_before_forecast_day'],
|
78 |
+
event_time="date"
|
79 |
+
)
|
80 |
+
|
81 |
+
print(f"Batch data: {batch_data}")
|
82 |
+
|
83 |
+
monitor_fg.insert(batch_data, write_options={"wait_for_job": True})
|
84 |
+
monitoring_df = monitor_fg.filter(monitor_fg.days_before_forecast_day == 1).read()
|
85 |
+
|
86 |
+
# Hindcast monitoring
|
87 |
+
|
88 |
+
air_quality_fg = fs.get_feature_group(
|
89 |
+
name='air_quality',
|
90 |
+
version=1,
|
91 |
+
)
|
92 |
+
air_quality_df = air_quality_fg.read()
|
93 |
+
|
94 |
+
outcome_df = air_quality_df[['date', 'pm25']]
|
95 |
+
preds_df = monitoring_df[['date', 'predicted_pm25']]
|
96 |
+
hindcast_df = pd.merge(preds_df, outcome_df, on="date")
|
97 |
+
hindcast_df = hindcast_df.sort_values(by=['date'])
|
98 |
+
|
99 |
+
if len(hindcast_df) == 0:
|
100 |
+
hindcast_df = util.backfill_predictions_for_monitoring(weather_fg, air_quality_df, monitor_fg, retrieved_xgboost_model)
|
101 |
+
|
102 |
+
plt = util.plot_air_quality_forecast(city, street, hindcast_df, file_path="./img/pm25_hindcast_1day.png", hindcast=True)
|
scheduler.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import modal
|
2 |
+
|
3 |
+
app = modal.App('scheduler')
|
4 |
+
|
5 |
+
@app.function(schedule=modal.Period(seconds=15))
|
6 |
+
def update():
|
7 |
+
print('Updating...')
|