Robzy commited on
Commit
43106f9
·
1 Parent(s): 35ffba0

time series for gradio

Browse files
Files changed (6) hide show
  1. .gitignore +2 -1
  2. app.py +16 -4
  3. debug.ipynb +22 -0
  4. img/pm25_forecast.png +0 -0
  5. infer.py +52 -2
  6. scheduler.py +7 -0
.gitignore CHANGED
@@ -1,3 +1,4 @@
1
  .venv
2
  .env
3
- .cache.sqlite
 
 
1
  .venv
2
  .env
3
+ .cache.sqlite
4
+ __pycache__/
app.py CHANGED
@@ -1,8 +1,20 @@
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
8
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ import random
5
 
6
+ from datetime import datetime, timedelta
7
+ now = datetime.now()
8
 
9
+ df = pd.DataFrame({
10
+ 'time': [now - timedelta(minutes=5*i) for i in range(25)],
11
+ 'price': np.random.randint(100, 1000, 25),
12
+ 'origin': [random.choice(["DFW", "DAL", "HOU"]) for _ in range(25)],
13
+ 'destination': [random.choice(["JFK", "LGA", "EWR"]) for _ in range(25)],
14
+ })
15
 
16
+ with gr.Blocks() as demo:
17
+ gr.LinePlot(df, x="time", y="price")
18
+ gr.ScatterPlot(df, x="time", y="price", color="origin")
19
+
20
+ demo.launch()
debug.ipynb ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "vscode": {
8
+ "languageId": "plaintext"
9
+ }
10
+ },
11
+ "outputs": [],
12
+ "source": []
13
+ }
14
+ ],
15
+ "metadata": {
16
+ "language_info": {
17
+ "name": "python"
18
+ }
19
+ },
20
+ "nbformat": 4,
21
+ "nbformat_minor": 2
22
+ }
img/pm25_forecast.png ADDED
infer.py CHANGED
@@ -14,6 +14,11 @@ project_name = os.getenv('HOPSWORKS_PROJECT')
14
  project = hopsworks.login(project=project_name, api_key_value=api_key)
15
  fs = project.get_feature_store()
16
  secrets = util.secrets_api(project.name)
 
 
 
 
 
17
 
18
  AQI_API_KEY = secrets.get_secret("AQI_API_KEY").value
19
  location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value
@@ -26,7 +31,7 @@ feature_view = fs.get_feature_view(
26
  version=1,
27
  )
28
 
29
- # Retreive model
30
 
31
  mr = project.get_model_registry()
32
 
@@ -39,7 +44,7 @@ saved_model_dir = retrieved_model.download()
39
  retrieved_xgboost_model = XGBRegressor()
40
  retrieved_xgboost_model.load_model(saved_model_dir + "/model.json")
41
 
42
- # Retrieve features
43
 
44
  weather_fg = fs.get_feature_group(
45
  name='weather',
@@ -48,5 +53,50 @@ weather_fg = fs.get_feature_group(
48
 
49
  today_timestamp = pd.to_datetime(today)
50
  batch_data = weather_fg.filter(weather_fg.date >= today_timestamp ).read()
 
 
 
 
51
  batch_data['predicted_pm25'] = retrieved_xgboost_model.predict(
52
  batch_data[['temperature_2m_mean', 'precipitation_sum', 'wind_speed_10m_max', 'wind_direction_10m_dominant']])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  project = hopsworks.login(project=project_name, api_key_value=api_key)
15
  fs = project.get_feature_store()
16
  secrets = util.secrets_api(project.name)
17
+ location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value
18
+ location = json.loads(location_str)
19
+ country=location['country']
20
+ city=location['city']
21
+ street=location['street']
22
 
23
  AQI_API_KEY = secrets.get_secret("AQI_API_KEY").value
24
  location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value
 
31
  version=1,
32
  )
33
 
34
+ ### Retreive model
35
 
36
  mr = project.get_model_registry()
37
 
 
44
  retrieved_xgboost_model = XGBRegressor()
45
  retrieved_xgboost_model.load_model(saved_model_dir + "/model.json")
46
 
47
+ ### Retrieve features
48
 
49
  weather_fg = fs.get_feature_group(
50
  name='weather',
 
53
 
54
  today_timestamp = pd.to_datetime(today)
55
  batch_data = weather_fg.filter(weather_fg.date >= today_timestamp ).read()
56
+
57
+
58
+ ### Predict and upload
59
+
60
  batch_data['predicted_pm25'] = retrieved_xgboost_model.predict(
61
  batch_data[['temperature_2m_mean', 'precipitation_sum', 'wind_speed_10m_max', 'wind_direction_10m_dominant']])
62
+
63
+ batch_data['street'] = street
64
+ batch_data['city'] = city
65
+ batch_data['country'] = country
66
+ # Fill in the number of days before the date on which you made the forecast (base_date)
67
+ batch_data['days_before_forecast_day'] = range(1, len(batch_data)+1)
68
+ batch_data = batch_data.sort_values(by=['date'])
69
+ #batch_data['date'] = batch_data['date'].dt.tz_convert(None).astype('datetime64[ns]')
70
+
71
+ plt = util.plot_air_quality_forecast(city, street, batch_data, file_path="./img/pm25_forecast.png")
72
+
73
+ monitor_fg = fs.get_or_create_feature_group(
74
+ name='aq_predictions',
75
+ description='Air Quality prediction monitoring',
76
+ version=1,
77
+ primary_key=['city','street','date','days_before_forecast_day'],
78
+ event_time="date"
79
+ )
80
+
81
+ print(f"Batch data: {batch_data}")
82
+
83
+ monitor_fg.insert(batch_data, write_options={"wait_for_job": True})
84
+ monitoring_df = monitor_fg.filter(monitor_fg.days_before_forecast_day == 1).read()
85
+
86
+ # Hindcast monitoring
87
+
88
+ air_quality_fg = fs.get_feature_group(
89
+ name='air_quality',
90
+ version=1,
91
+ )
92
+ air_quality_df = air_quality_fg.read()
93
+
94
+ outcome_df = air_quality_df[['date', 'pm25']]
95
+ preds_df = monitoring_df[['date', 'predicted_pm25']]
96
+ hindcast_df = pd.merge(preds_df, outcome_df, on="date")
97
+ hindcast_df = hindcast_df.sort_values(by=['date'])
98
+
99
+ if len(hindcast_df) == 0:
100
+ hindcast_df = util.backfill_predictions_for_monitoring(weather_fg, air_quality_df, monitor_fg, retrieved_xgboost_model)
101
+
102
+ plt = util.plot_air_quality_forecast(city, street, hindcast_df, file_path="./img/pm25_hindcast_1day.png", hindcast=True)
scheduler.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import modal
2
+
3
+ app = modal.App('scheduler')
4
+
5
+ @app.function(schedule=modal.Period(seconds=15))
6
+ def update():
7
+ print('Updating...')