Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
# # <span style="font-width:bold; font-size: 3rem; color:#1EB182;"> **Air Quality** </span><span style="font-width:bold; font-size: 3rem; color:#333;">- Part 04: Batch Inference</span> | |
# | |
# ## ποΈ This notebook is divided into the following sections: | |
# | |
# 1. Download model and batch inference data | |
# 2. Make predictions, generate PNG for forecast | |
# 3. Store predictions in a monitoring feature group adn generate PNG for hindcast | |
# ## <span style='color:#ff5f27'> π Imports | |
# In[1]: | |
import datetime | |
import pandas as pd | |
from xgboost import XGBRegressor | |
import hopsworks | |
import json | |
from functions import util | |
import os | |
# In[2]: | |
today = datetime.datetime.now() - datetime.timedelta(0) | |
tomorrow = today + datetime.timedelta(days = 1) | |
today | |
# ## <span style="color:#ff5f27;"> π‘ Connect to Hopsworks Feature Store </span> | |
# In[3]: | |
# os.environ["HOPSWORKS_API_KEY"] = "" | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
secrets = util.secrets_api(project.name) | |
location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value | |
location = json.loads(location_str) | |
country=location['country'] | |
city=location['city'] | |
street=location['street'] | |
# ## <span style="color:#ff5f27;"> βοΈ Feature View Retrieval</span> | |
# | |
# In[4]: | |
feature_view = fs.get_feature_view( | |
name='air_quality_fv', | |
version=1, | |
) | |
# ## <span style="color:#ff5f27;">πͺ Download the model from Model Registry</span> | |
# In[5]: | |
mr = project.get_model_registry() | |
retrieved_model = mr.get_model( | |
name="air_quality_xgboost_model", | |
version=1, | |
) | |
# Download the saved model artifacts to a local directory | |
saved_model_dir = retrieved_model.download() | |
# In[6]: | |
# Loading the XGBoost regressor model and label encoder from the saved model directory | |
# retrieved_xgboost_model = joblib.load(saved_model_dir + "/xgboost_regressor.pkl") | |
retrieved_xgboost_model = XGBRegressor() | |
retrieved_xgboost_model.load_model(saved_model_dir + "/model.json") | |
# Displaying the retrieved XGBoost regressor model | |
retrieved_xgboost_model | |
# In[7]: | |
# Access the feature names of the trained XGBoost model | |
feature_names = retrieved_xgboost_model.get_booster().feature_names | |
# Print the feature names | |
print("Feature names:", feature_names) | |
# ## <span style="color:#ff5f27;">β¨ Get Weather Forecast Features with Feature View </span> | |
# | |
# | |
# In[8]: | |
weather_fg = fs.get_feature_group( | |
name='weather', | |
version=1, | |
) | |
today_timestamp = pd.to_datetime(today) | |
batch_data = weather_fg.filter(weather_fg.date >= today_timestamp ).read() | |
batch_data | |
# ### Get Mean air quality for past days | |
# In[9]: | |
air_quality_fg = fs.get_feature_group( | |
name='air_quality', | |
version=1, | |
) | |
selected_features = air_quality_fg.select_all() #(['pm25']).join(weather_fg.select_all(), on=['city']) | |
selected_features = selected_features.read() | |
# In[10]: | |
selected_features = selected_features.sort_values(by='date').reset_index(drop=True) | |
# In[11]: | |
past_air_q_list = selected_features[['date', 'pm25']][-3:]['pm25'].tolist() | |
# In[12]: | |
batch_data = batch_data.sort_values(by='date').reset_index(drop=True) | |
# In[13]: | |
batch_data['past_air_quality'] = None | |
# In[14]: | |
batch_data | |
# ### <span style="color:#ff5f27;">π€ Making the predictions</span> | |
# In[15]: | |
# Initialize an empty list to store predictions | |
predictions = [] | |
# Iterate through each row of the DataFrame | |
for index, row in batch_data.iterrows(): | |
past_air_quality_mean = sum(past_air_q_list)/3 | |
# Extract the feature values for prediction as a 1D array | |
features = row[['past_air_quality', 'temperature_2m_mean', 'precipitation_sum', | |
'wind_speed_10m_max', 'wind_direction_10m_dominant']].values | |
# Reshape features to a 2D array (required by XGBoost's predict method) | |
features = features.reshape(1, -1) | |
# Make a prediction for the row | |
prediction = retrieved_xgboost_model.predict(features) | |
# Append the prediction to the list | |
predictions.append(prediction[0]) | |
past_air_q_list.append(prediction[0]) | |
past_air_q_list = past_air_q_list[1:] | |
# print(past_air_q_list) | |
batch_data.loc[index,'past_air_quality'] = past_air_quality_mean | |
# Add the predictions as a new column in the DataFrame | |
batch_data['predicted_pm25'] = predictions | |
# Display the updated DataFrame | |
batch_data | |
# In[16]: | |
# batch_data['predicted_pm25'] = retrieved_xgboost_model.predict( | |
# batch_data[['temperature_2m_mean', 'precipitation_sum', 'wind_speed_10m_max', 'wind_direction_10m_dominant']]) | |
# batch_data | |
# In[17]: | |
batch_data.info() | |
# ### <span style="color:#ff5f27;">π€ Saving the predictions (for monitoring) to a Feature Group</span> | |
# In[18]: | |
batch_data['street'] = street | |
batch_data['city'] = city | |
batch_data['country'] = country | |
# Fill in the number of days before the date on which you made the forecast (base_date) | |
batch_data['days_before_forecast_day'] = range(1, len(batch_data)+1) | |
batch_data = batch_data.sort_values(by=['date']) | |
batch_data['date'] = batch_data['date'].dt.tz_convert(None).astype('datetime64[ns]') | |
batch_data | |
# In[19]: | |
batch_data.info() | |
# ### Create Forecast Graph | |
# Draw a graph of the predictions with dates as a PNG and save it to the github repo | |
# Show it on github pages | |
# In[20]: | |
file_path = "img/pm25_forecast.png" | |
plt = util.plot_air_quality_forecast(city, street, batch_data, file_path) | |
plt.show() | |
# In[21]: | |
# Get or create feature group | |
monitor_fg = fs.get_or_create_feature_group( | |
name='aq_predictions', | |
description='Air Quality prediction monitoring', | |
version=1, | |
primary_key=['city','street','date','days_before_forecast_day'], | |
event_time="date" | |
) | |
# In[22]: | |
monitor_fg.insert(batch_data, write_options={"wait_for_job": True}) | |
# In[23]: | |
# We will create a hindcast chart for only the forecasts made 1 day beforehand | |
monitoring_df = monitor_fg.filter(monitor_fg.days_before_forecast_day == 1).read() | |
monitoring_df | |
# In[24]: | |
air_quality_fg = fs.get_feature_group( | |
name='air_quality', | |
version=1, | |
) | |
air_quality_df = air_quality_fg.read() | |
air_quality_df | |
# In[25]: | |
air_quality_df['date'] | |
# In[26]: | |
monitoring_df['date'] | |
# In[27]: | |
air_quality_df['date'] = pd.to_datetime(air_quality_df['date']) | |
monitoring_df['date'] = monitoring_df['date'].dt.tz_convert(None).astype('datetime64[ns]') | |
# In[28]: | |
weather_fg.read() | |
# In[29]: | |
air_quality_df | |
# In[30]: | |
monitor_fg.read() | |
# In[31]: | |
outcome_df = air_quality_df[['date', 'pm25']] | |
preds_df = monitoring_df[['date', 'predicted_pm25']] | |
hindcast_df = pd.merge(preds_df, outcome_df, on="date") | |
hindcast_df = hindcast_df.sort_values(by=['date']) | |
# If there are no outcomes for predictions yet, generate some predictions/outcomes from existing data | |
if len(hindcast_df) == 0: | |
hindcast_df = util.backfill_predictions_for_monitoring(weather_fg, air_quality_df, monitor_fg, retrieved_xgboost_model) | |
hindcast_df | |
# ### Plot the Hindcast comparing predicted with forecasted values (1-day prior forecast) | |
# | |
# __This graph will be empty to begin with - this is normal.__ | |
# | |
# After a few days of predictions and observations, you will get data points in this graph. | |
# In[32]: | |
file_path = "img/pm25_hindcast_1day.png" | |
plt = util.plot_air_quality_forecast(city, street, hindcast_df, file_path, hindcast=True) | |
plt.show() | |
# %% | |