basebody / app.py
hwajjala's picture
Create text features
267519a
raw
history blame
1.26 kB
import os
import clip
import torch
import logging
import json
import pickle
import gradio as gr
logger = logging.getLogger("basebody")
CLIP_MODEL_NAME = "ViT-B/16"
TEXT_PROMPTS_FILE_NAME = "text_prompts.json"
LOGISTIC_REGRESSION_MODEL_FILE_NAME = "logistic_regression_l1_oct_2.pkl"
clip_model, preprocess = clip.load(CLIP_MODEL_NAME, device="cpu")
with open(
os.path.join(os.path.dirname(__file__), TEXT_PROMPTS_FILE_NAME), "r"
) as f:
text_prompts = json.load(f)
with open(
os.path.join(
os.path.dirname(__file__), LOGISTIC_REGRESSION_MODEL_FILE_NAME
),
"rb",
) as f:
lr_model = pickle.load(f)
logger.info("Logistic regression model loaded, coefficients: ")
all_text_features = []
with torch.no_grad():
for k, prompts in text_prompts.items():
assert len(prompts) == 2
inputs = clip.tokenize(prompts)
outputs = clip_model.encode_text(inputs)
all_text_features.append(outputs)
all_text_features = torch.cat(all_text_features, dim=0)
all_text_features = all_text_features.cpu().numpy()
def predict_fn(name):
return "Hello " + name + "!"
iface = gr.Interface(
fn=predict_fn,
inputs="image",
outputs="text",
allow_flagging="manual"
)
iface.launch()