aq-predictor / app.py
hwajjala's picture
Update app.py
272c24b verified
raw
history blame
1.35 kB
import os
import clip
import torch
import logging
import json
import pandas as pd
from PIL import Image
import gradio as gr
from autogluon.tabular import TabularPredictor
predictor = TabularPredictor.load("ag-20240618_230402", require_py_version_match=False)
# set logging level
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger("AQ")
CLIP_MODEL_NAME = "ViT-B/32"
clip_model, preprocess = clip.load(CLIP_MODEL_NAME, device="cpu")
def predict_fn(input_img):
input_img = Image.fromarray(input_img.astype("uint8"), "RGB")
image = preprocess(input_img).unsqueeze(0)
with torch.no_grad():
image_features = clip_model.encode_image(image).numpy()
input_df = pd.DataFrame(image_features[0].reshape(1, -1))
quality_score = float(predictor.predict(input_df).iloc[0])
logger.info(f"decision: {quality_score}")
decision_json = json.dumps({"quality_score": quality_score}).encode("utf-8")
logger.info(f"decision_json: {decision_json}")
return decision_json
iface = gr.Interface(
fn=predict_fn,
inputs="image",
outputs="text",
description="""
The model returns quality score for an avatar based on visual apeal and humanoid appearance.
""",
allow_flagging="manual",
)
iface.launch()