Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
import numpy as np
|
| 4 |
import joblib, os
|
| 5 |
|
| 6 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
|
@@ -11,13 +10,14 @@ model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.jobli
|
|
| 11 |
pipeline = joblib.load(pipeline_path)
|
| 12 |
model = joblib.load(model_path)
|
| 13 |
|
| 14 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def predict(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal):
|
| 16 |
# Create a dataframe with the input data
|
| 17 |
-
|
| 18 |
-
input_df = pd.read_csv("heart.csv")
|
| 19 |
-
'''
|
| 20 |
-
input_df = pd.DataFrame({
|
| 21 |
'age': [age],
|
| 22 |
'sex': [sex],
|
| 23 |
'cp': [cp],
|
|
@@ -32,7 +32,7 @@ def predict(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak,
|
|
| 32 |
'ca': [ca],
|
| 33 |
'thal': [thal]
|
| 34 |
})
|
| 35 |
-
|
| 36 |
# Process input data using the pipeline
|
| 37 |
X_processed = pipeline.transform(input_df)
|
| 38 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import joblib, os
|
| 4 |
|
| 5 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
| 10 |
pipeline = joblib.load(pipeline_path)
|
| 11 |
model = joblib.load(model_path)
|
| 12 |
|
| 13 |
+
# Load the heart.csv data
|
| 14 |
+
heart_data_path = os.path.join(script_dir, 'heart.csv')
|
| 15 |
+
heart_df = pd.read_csv(heart_data_path)
|
| 16 |
+
|
| 17 |
+
# Define the predict function
|
| 18 |
def predict(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal):
|
| 19 |
# Create a dataframe with the input data
|
| 20 |
+
input_df = pd.DataFrame({
|
|
|
|
|
|
|
|
|
|
| 21 |
'age': [age],
|
| 22 |
'sex': [sex],
|
| 23 |
'cp': [cp],
|
|
|
|
| 32 |
'ca': [ca],
|
| 33 |
'thal': [thal]
|
| 34 |
})
|
| 35 |
+
|
| 36 |
# Process input data using the pipeline
|
| 37 |
X_processed = pipeline.transform(input_df)
|
| 38 |
|