Spaces:
Running
Running
import os | |
import gradio as gr | |
import asyncio | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load Mistral model | |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.bfloat16 | |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
async def initialize(file_path, question): | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
if os.path.exists(file_path): | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:30]) | |
# Prepare input for Mistral model | |
input_text = prompt.format(context=context, question=question) | |
inputs = tokenizer.encode(input_text, return_tensors='pt').to(device) | |
# Generate the output | |
with torch.no_grad(): | |
outputs = model.generate(inputs, max_length=500) # Adjust max_length as needed | |
# Decode and return the output | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer | |
else: | |
return "Error: Unable to process the document. Please ensure the PDF file is valid." | |
# Define Gradio Interface | |
input_file = gr.File(label="Upload PDF File") | |
input_question = gr.Textbox(label="Ask about the document") | |
output_text = gr.Textbox(label="Answer - Mistral Model") | |
async def pdf_qa(file, question): | |
answer = await initialize(file.name, question) | |
return answer | |
# Create Gradio Interface | |
gr.Interface( | |
fn=pdf_qa, | |
inputs=[input_file, input_question], | |
outputs=output_text, | |
title="RAG Knowledge Retrieval using Mistral Model", | |
description="Upload a PDF file and ask questions about the content." | |
).launch() |