Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from keybert import KeyBERT
|
|
|
|
| 3 |
|
| 4 |
# 初始化 KeyBERT 模型
|
| 5 |
kw_model = KeyBERT()
|
|
@@ -13,7 +14,10 @@ text = st.text_area("請貼上文字並按下按鈕以抓取關鍵字", height=2
|
|
| 13 |
# 按鈕來觸發關鍵字抓取
|
| 14 |
if st.button("抓取關鍵字"):
|
| 15 |
if text:
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
st.write("抓取到的關鍵字及相關性分數:")
|
| 18 |
for keyword, relevance in keywords:
|
| 19 |
st.write(f"關鍵字: {keyword}, 相關性分數: {relevance:.4f}")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from keybert import KeyBERT
|
| 3 |
+
import jieba
|
| 4 |
|
| 5 |
# 初始化 KeyBERT 模型
|
| 6 |
kw_model = KeyBERT()
|
|
|
|
| 14 |
# 按鈕來觸發關鍵字抓取
|
| 15 |
if st.button("抓取關鍵字"):
|
| 16 |
if text:
|
| 17 |
+
# 使用 jieba 對輸入的中文文本進行分詞
|
| 18 |
+
words = " ".join(jieba.cut(text))
|
| 19 |
+
# 使用 KeyBERT 抓取關鍵字
|
| 20 |
+
keywords = kw_model.extract_keywords(words, stop_words='english')
|
| 21 |
st.write("抓取到的關鍵字及相關性分數:")
|
| 22 |
for keyword, relevance in keywords:
|
| 23 |
st.write(f"關鍵字: {keyword}, 相關性分數: {relevance:.4f}")
|