Spaces:
Sleeping
Sleeping
Roberta2024
commited on
Commit
•
4eee952
1
Parent(s):
4884347
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.models import Sequential
|
5 |
+
from tensorflow.keras.layers import Dense, LSTM
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
+
from sklearn.metrics import mean_squared_error
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
# fix random seed for reproducibility
|
12 |
+
tf.random.set_seed(7)
|
13 |
+
|
14 |
+
def train_and_predict(file, epochs):
|
15 |
+
# Load the dataset
|
16 |
+
dataframe = pd.read_csv(file.name, usecols=[1], engine='python', encoding="big5")
|
17 |
+
dataset = dataframe.values.astype('float32')
|
18 |
+
|
19 |
+
# Normalize the dataset
|
20 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
21 |
+
dataset = scaler.fit_transform(dataset)
|
22 |
+
|
23 |
+
# Split into train and test sets
|
24 |
+
train_size = int(len(dataset) * 0.8)
|
25 |
+
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
|
26 |
+
|
27 |
+
# Convert an array of values into a dataset matrix
|
28 |
+
def create_dataset(dataset, look_back=1):
|
29 |
+
dataX, dataY = [], []
|
30 |
+
for i in range(len(dataset)-look_back-1):
|
31 |
+
a = dataset[i:(i+look_back), 0]
|
32 |
+
dataX.append(a)
|
33 |
+
dataY.append(dataset[i + look_back, 0])
|
34 |
+
return np.array(dataX), np.array(dataY)
|
35 |
+
|
36 |
+
# Reshape into X=t and Y=t+1
|
37 |
+
look_back = 1
|
38 |
+
trainX, trainY = create_dataset(train, look_back)
|
39 |
+
testX, testY = create_dataset(test, look_back)
|
40 |
+
|
41 |
+
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
|
42 |
+
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
|
43 |
+
|
44 |
+
# Create and fit the LSTM network
|
45 |
+
model = Sequential()
|
46 |
+
model.add(LSTM(4, input_shape=(1, look_back)))
|
47 |
+
model.add(Dense(1))
|
48 |
+
model.compile(loss='mean_squared_error', optimizer='adam')
|
49 |
+
model.fit(trainX, trainY, epochs=epochs, batch_size=1, verbose=2)
|
50 |
+
|
51 |
+
# Make predictions
|
52 |
+
trainPredict = model.predict(trainX)
|
53 |
+
testPredict = model.predict(testX)
|
54 |
+
|
55 |
+
# Invert predictions
|
56 |
+
trainPredict = scaler.inverse_transform(trainPredict)
|
57 |
+
trainY = scaler.inverse_transform([trainY])
|
58 |
+
testPredict = scaler.inverse_transform(testPredict)
|
59 |
+
testY = scaler.inverse_transform([testY])
|
60 |
+
|
61 |
+
# Calculate root mean squared error
|
62 |
+
trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
|
63 |
+
testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
|
64 |
+
|
65 |
+
# Plot predictions
|
66 |
+
trainPredictPlot = np.empty_like(dataset)
|
67 |
+
trainPredictPlot[:, :] = np.nan
|
68 |
+
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict
|
69 |
+
|
70 |
+
testPredictPlot = np.empty_like(dataset)
|
71 |
+
testPredictPlot[:, :] = np.nan
|
72 |
+
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict
|
73 |
+
|
74 |
+
plt.figure(figsize=(12, 8))
|
75 |
+
plt.plot(scaler.inverse_transform(dataset), label='Original Data')
|
76 |
+
plt.plot(trainPredictPlot, label='Training Predictions', linestyle='--')
|
77 |
+
plt.plot(testPredictPlot, label='Test Predictions', linestyle='--')
|
78 |
+
plt.xlabel('Time')
|
79 |
+
plt.ylabel('Scaled Values')
|
80 |
+
plt.title('Original Data and Predictions')
|
81 |
+
plt.legend()
|
82 |
+
|
83 |
+
return (f'Train Score: {trainScore:.2f} RMSE\nTest Score: {testScore:.2f} RMSE'), plt
|
84 |
+
|
85 |
+
# Gradio interface
|
86 |
+
file_input = gr.File(label="Upload CSV File")
|
87 |
+
epochs_input = gr.Slider(minimum=1, maximum=100, value=50, label="Epochs")
|
88 |
+
output_text = gr.Textbox(label="Training and Testing RMSE Scores")
|
89 |
+
output_plot = gr.Plot(label="Original Data and Predictions")
|
90 |
+
|
91 |
+
gr.Interface(
|
92 |
+
fn=train_and_predict,
|
93 |
+
inputs=[file_input, epochs_input],
|
94 |
+
outputs=[output_text, output_plot],
|
95 |
+
title="LSTM Model for Time Series Prediction",
|
96 |
+
description="Upload a CSV file with time series data and specify the number of epochs to train the model."
|
97 |
+
).launch()
|