Spaces:
Runtime error
Runtime error
inpainting outpainting
Browse files- annotator/inpainting/__init__.py +8 -7
- annotator/outpainting/__init__.py +12 -7
- app.py +34 -25
- requirements.txt +1 -1
annotator/inpainting/__init__.py
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
import numpy as np
|
| 2 |
|
| 3 |
class Inpainter:
|
| 4 |
-
def __call__(self, img,
|
| 5 |
h = img.shape[0]
|
| 6 |
w = img.shape[1]
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
| 12 |
img_new = img
|
| 13 |
-
img_new[
|
| 14 |
img_new = img_new.astype('ubyte')
|
| 15 |
return img_new
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
|
| 3 |
class Inpainter:
|
| 4 |
+
def __call__(self, img, height_top_mask, height_down_mask, width_left_mask, width_right_mask):
|
| 5 |
h = img.shape[0]
|
| 6 |
w = img.shape[1]
|
| 7 |
+
h_top_mask = int(float(h) / 100.0 * float(height_top_mask))
|
| 8 |
+
h_down_mask = int(float(h) / 100.0 * float(height_down_mask))
|
| 9 |
+
|
| 10 |
+
w_left_mask = int(float(w) / 100.0 * float(width_left_mask))
|
| 11 |
+
w_right_mask = int(float(w) / 100.0 * float(width_right_mask))
|
| 12 |
+
|
| 13 |
img_new = img
|
| 14 |
+
img_new[h_top_mask:h_down_mask, w_left_mask:w_right_mask] = 0
|
| 15 |
img_new = img_new.astype('ubyte')
|
| 16 |
return img_new
|
annotator/outpainting/__init__.py
CHANGED
|
@@ -9,12 +9,17 @@
|
|
| 9 |
import numpy as np
|
| 10 |
|
| 11 |
class Outpainter:
|
| 12 |
-
def __call__(self, img,
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
img_new = img_new.astype('ubyte')
|
| 20 |
return img_new
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
|
| 11 |
class Outpainter:
|
| 12 |
+
def __call__(self, img, height_top_extended, height_down_extended, width_left_extended, width_right_extended):
|
| 13 |
+
height, width, channel = img.shape
|
| 14 |
+
|
| 15 |
+
height_top_new = int(float(height) / 100.0 * float(height_top_extended))
|
| 16 |
+
height_down_new = int(float(height) / 100.0 * float(height_down_extended))
|
| 17 |
+
width_left_new = int(float(width) / 100.0 * float(width_left_extended))
|
| 18 |
+
width_right_new = int(float(width) / 100.0 * float(width_right_extended))
|
| 19 |
+
|
| 20 |
+
new_height = height + height_top_new + height_down_new
|
| 21 |
+
new_width = width + width_left_new + width_right_new
|
| 22 |
+
img_new = np.zeros([new_height, new_width, channel])
|
| 23 |
+
img_new[height_top_new: (height + height_top_new), width_left_new: (width + width_left_new), : ] = img
|
| 24 |
img_new = img_new.astype('ubyte')
|
| 25 |
return img_new
|
app.py
CHANGED
|
@@ -54,9 +54,9 @@ def midas(img, res):
|
|
| 54 |
return results
|
| 55 |
|
| 56 |
|
| 57 |
-
def outpainting(img, res,
|
| 58 |
img = resize_image(HWC3(img), res)
|
| 59 |
-
result = model_outpainting(img,
|
| 60 |
return result
|
| 61 |
|
| 62 |
|
|
@@ -72,9 +72,9 @@ def blur(img, res, ksize):
|
|
| 72 |
return result
|
| 73 |
|
| 74 |
|
| 75 |
-
def inpainting(img, res,
|
| 76 |
img = resize_image(HWC3(img), res)
|
| 77 |
-
result = model_inpainting(img,
|
| 78 |
return result
|
| 79 |
|
| 80 |
model = create_model('./models/cldm_v15_unicontrol.yaml').cpu()
|
|
@@ -631,13 +631,13 @@ def process_bbox(input_image, prompt, a_prompt, n_prompt, num_samples, image_res
|
|
| 631 |
|
| 632 |
|
| 633 |
def process_outpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 634 |
-
strength, scale, seed, eta,
|
| 635 |
with torch.no_grad():
|
| 636 |
input_image = HWC3(input_image)
|
| 637 |
img = resize_image(input_image, image_resolution)
|
| 638 |
H, W, C = img.shape
|
| 639 |
if condition_mode == True:
|
| 640 |
-
detected_map = outpainting(input_image, image_resolution,
|
| 641 |
else:
|
| 642 |
detected_map = img
|
| 643 |
|
|
@@ -987,7 +987,7 @@ with demo:
|
|
| 987 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 988 |
step=64)
|
| 989 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 990 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=True)
|
| 991 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 992 |
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=40, step=1)
|
| 993 |
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200,
|
|
@@ -1018,7 +1018,7 @@ with demo:
|
|
| 1018 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1019 |
step=64)
|
| 1020 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1021 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=True)
|
| 1022 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1023 |
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
|
| 1024 |
step=1)
|
|
@@ -1048,7 +1048,7 @@ with demo:
|
|
| 1048 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1049 |
step=64)
|
| 1050 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1051 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=False)
|
| 1052 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1053 |
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
|
| 1054 |
step=1)
|
|
@@ -1078,7 +1078,7 @@ with demo:
|
|
| 1078 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1079 |
step=64)
|
| 1080 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1081 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=True)
|
| 1082 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1083 |
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
|
| 1084 |
step=1)
|
|
@@ -1108,7 +1108,7 @@ with demo:
|
|
| 1108 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1109 |
step=64)
|
| 1110 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1111 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=True)
|
| 1112 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1113 |
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
|
| 1114 |
step=1)
|
|
@@ -1138,7 +1138,7 @@ with demo:
|
|
| 1138 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1139 |
step=64)
|
| 1140 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1141 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=True)
|
| 1142 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1143 |
detect_resolution = gr.Slider(label="OpenPose Resolution", minimum=128, maximum=1024, value=512,
|
| 1144 |
step=1)
|
|
@@ -1168,7 +1168,7 @@ with demo:
|
|
| 1168 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1169 |
step=64)
|
| 1170 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1171 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=True)
|
| 1172 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1173 |
detect_resolution = gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024,
|
| 1174 |
value=512, step=1)
|
|
@@ -1198,7 +1198,7 @@ with demo:
|
|
| 1198 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1199 |
step=64)
|
| 1200 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1201 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=True)
|
| 1202 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1203 |
confidence = gr.Slider(label="Confidence of Detection", minimum=0.1, maximum=1.0, value=0.4,
|
| 1204 |
step=0.1)
|
|
@@ -1229,10 +1229,19 @@ with demo:
|
|
| 1229 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1230 |
step=64)
|
| 1231 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1232 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=False)
|
| 1233 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1234 |
-
|
| 1235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1236 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1237 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1238 |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
|
@@ -1243,7 +1252,7 @@ with demo:
|
|
| 1243 |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1244 |
height='auto')
|
| 1245 |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 1246 |
-
strength, scale, seed, eta,
|
| 1247 |
run_button.click(fn=process_outpainting, inputs=ips, outputs=[result_gallery])
|
| 1248 |
|
| 1249 |
with gr.TabItem("Inpainting"):
|
|
@@ -1259,15 +1268,15 @@ with demo:
|
|
| 1259 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1260 |
step=64)
|
| 1261 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1262 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=False)
|
| 1263 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1264 |
-
h_ratio_t = gr.Slider(label="
|
| 1265 |
step=1)
|
| 1266 |
-
h_ratio_d = gr.Slider(label="
|
| 1267 |
step=1)
|
| 1268 |
-
w_ratio_l = gr.Slider(label="
|
| 1269 |
step=1)
|
| 1270 |
-
w_ratio_r = gr.Slider(label="
|
| 1271 |
step=1)
|
| 1272 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1273 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
|
@@ -1295,7 +1304,7 @@ with demo:
|
|
| 1295 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1296 |
step=64)
|
| 1297 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1298 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=False)
|
| 1299 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1300 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1301 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
|
@@ -1323,7 +1332,7 @@ with demo:
|
|
| 1323 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1324 |
step=64)
|
| 1325 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1326 |
-
condition_mode = gr.Checkbox(label='Condition Extraction', value=False)
|
| 1327 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1328 |
ksize = gr.Slider(label="Kernel Size", minimum=11, maximum=101, value=51, step=2)
|
| 1329 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
|
|
|
| 54 |
return results
|
| 55 |
|
| 56 |
|
| 57 |
+
def outpainting(img, res, height_top_extended, height_down_extended, width_left_extended, width_right_extended):
|
| 58 |
img = resize_image(HWC3(img), res)
|
| 59 |
+
result = model_outpainting(img, height_top_extended, height_down_extended, width_left_extended, width_right_extended)
|
| 60 |
return result
|
| 61 |
|
| 62 |
|
|
|
|
| 72 |
return result
|
| 73 |
|
| 74 |
|
| 75 |
+
def inpainting(img, res, height_top_mask, height_down_mask, width_left_mask, width_right_mask):
|
| 76 |
img = resize_image(HWC3(img), res)
|
| 77 |
+
result = model_inpainting(img, height_top_mask, height_down_mask, width_left_mask, width_right_mask)
|
| 78 |
return result
|
| 79 |
|
| 80 |
model = create_model('./models/cldm_v15_unicontrol.yaml').cpu()
|
|
|
|
| 631 |
|
| 632 |
|
| 633 |
def process_outpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 634 |
+
strength, scale, seed, eta, height_top_extended, height_down_extended, width_left_extended, width_right_extended, condition_mode):
|
| 635 |
with torch.no_grad():
|
| 636 |
input_image = HWC3(input_image)
|
| 637 |
img = resize_image(input_image, image_resolution)
|
| 638 |
H, W, C = img.shape
|
| 639 |
if condition_mode == True:
|
| 640 |
+
detected_map = outpainting(input_image, image_resolution, height_top_extended, height_down_extended, width_left_extended, width_right_extended)
|
| 641 |
else:
|
| 642 |
detected_map = img
|
| 643 |
|
|
|
|
| 987 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 988 |
step=64)
|
| 989 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 990 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Canny', value=True)
|
| 991 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 992 |
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=40, step=1)
|
| 993 |
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200,
|
|
|
|
| 1018 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1019 |
step=64)
|
| 1020 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1021 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> HED', value=True)
|
| 1022 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1023 |
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
|
| 1024 |
step=1)
|
|
|
|
| 1048 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1049 |
step=64)
|
| 1050 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1051 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Sketch', value=False)
|
| 1052 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1053 |
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
|
| 1054 |
step=1)
|
|
|
|
| 1078 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1079 |
step=64)
|
| 1080 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1081 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Depth', value=True)
|
| 1082 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1083 |
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
|
| 1084 |
step=1)
|
|
|
|
| 1108 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1109 |
step=64)
|
| 1110 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1111 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Normal', value=True)
|
| 1112 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1113 |
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
|
| 1114 |
step=1)
|
|
|
|
| 1138 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1139 |
step=64)
|
| 1140 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1141 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Skeleton', value=True)
|
| 1142 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1143 |
detect_resolution = gr.Slider(label="OpenPose Resolution", minimum=128, maximum=1024, value=512,
|
| 1144 |
step=1)
|
|
|
|
| 1168 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1169 |
step=64)
|
| 1170 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1171 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Seg', value=True)
|
| 1172 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1173 |
detect_resolution = gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024,
|
| 1174 |
value=512, step=1)
|
|
|
|
| 1198 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1199 |
step=64)
|
| 1200 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1201 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Bbox', value=True)
|
| 1202 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1203 |
confidence = gr.Slider(label="Confidence of Detection", minimum=0.1, maximum=1.0, value=0.4,
|
| 1204 |
step=0.1)
|
|
|
|
| 1229 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1230 |
step=64)
|
| 1231 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1232 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: Extending', value=False)
|
| 1233 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1234 |
+
|
| 1235 |
+
height_top_extended = gr.Slider(label="Top Extended Ratio (%)", minimum=1, maximum=200,
|
| 1236 |
+
value=50, step=1)
|
| 1237 |
+
height_down_extended = gr.Slider(label="Down Extended Ratio (%)", minimum=1, maximum=200,
|
| 1238 |
+
value=50, step=1)
|
| 1239 |
+
|
| 1240 |
+
width_left_extended = gr.Slider(label="Left Extended Ratio (%)", minimum=1, maximum=200,
|
| 1241 |
+
value=50, step=1)
|
| 1242 |
+
width_right_extended = gr.Slider(label="Right Extended Ratio (%)", minimum=1, maximum=200,
|
| 1243 |
+
value=50, step=1)
|
| 1244 |
+
|
| 1245 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1246 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1247 |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
|
|
|
| 1252 |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1253 |
height='auto')
|
| 1254 |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 1255 |
+
strength, scale, seed, eta, height_top_extended, height_down_extended, width_left_extended, width_right_extended, condition_mode]
|
| 1256 |
run_button.click(fn=process_outpainting, inputs=ips, outputs=[result_gallery])
|
| 1257 |
|
| 1258 |
with gr.TabItem("Inpainting"):
|
|
|
|
| 1268 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1269 |
step=64)
|
| 1270 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1271 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: Cropped Masking', value=False)
|
| 1272 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1273 |
+
h_ratio_t = gr.Slider(label="Top Masking Ratio (%)", minimum=0, maximum=100, value=30,
|
| 1274 |
step=1)
|
| 1275 |
+
h_ratio_d = gr.Slider(label="Down Masking Ratio (%)", minimum=0, maximum=100, value=60,
|
| 1276 |
step=1)
|
| 1277 |
+
w_ratio_l = gr.Slider(label="Left Masking Ratio (%)", minimum=0, maximum=100, value=30,
|
| 1278 |
step=1)
|
| 1279 |
+
w_ratio_r = gr.Slider(label="Right Masking Ratio (%)", minimum=0, maximum=100, value=60,
|
| 1280 |
step=1)
|
| 1281 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1282 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
|
|
|
| 1304 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1305 |
step=64)
|
| 1306 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1307 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Gray', value=False)
|
| 1308 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1309 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1310 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
|
|
|
| 1332 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1333 |
step=64)
|
| 1334 |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1335 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Blur', value=False)
|
| 1336 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1337 |
ksize = gr.Slider(label="Kernel Size", minimum=11, maximum=101, value=51, step=2)
|
| 1338 |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
requirements.txt
CHANGED
|
@@ -22,4 +22,4 @@ xformers==0.0.16
|
|
| 22 |
yapf==0.32.0
|
| 23 |
cvlib==0.2.7
|
| 24 |
tensorflow-cpu
|
| 25 |
-
basicsr==1.4.2
|
|
|
|
| 22 |
yapf==0.32.0
|
| 23 |
cvlib==0.2.7
|
| 24 |
tensorflow-cpu
|
| 25 |
+
basicsr==1.4.2
|