Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| from mmcv.cnn import ConvModule, xavier_init | |
| from ..builder import NECKS | |
| class ChannelMapper(nn.Module): | |
| r"""Channel Mapper to reduce/increase channels of backbone features. | |
| This is used to reduce/increase channels of backbone features. | |
| Args: | |
| in_channels (List[int]): Number of input channels per scale. | |
| out_channels (int): Number of output channels (used at each scale). | |
| kernel_size (int, optional): kernel_size for reducing channels (used | |
| at each scale). Default: 3. | |
| conv_cfg (dict, optional): Config dict for convolution layer. | |
| Default: None. | |
| norm_cfg (dict, optional): Config dict for normalization layer. | |
| Default: None. | |
| act_cfg (dict, optional): Config dict for activation layer in | |
| ConvModule. Default: dict(type='ReLU'). | |
| Example: | |
| >>> import torch | |
| >>> in_channels = [2, 3, 5, 7] | |
| >>> scales = [340, 170, 84, 43] | |
| >>> inputs = [torch.rand(1, c, s, s) | |
| ... for c, s in zip(in_channels, scales)] | |
| >>> self = ChannelMapper(in_channels, 11, 3).eval() | |
| >>> outputs = self.forward(inputs) | |
| >>> for i in range(len(outputs)): | |
| ... print(f'outputs[{i}].shape = {outputs[i].shape}') | |
| outputs[0].shape = torch.Size([1, 11, 340, 340]) | |
| outputs[1].shape = torch.Size([1, 11, 170, 170]) | |
| outputs[2].shape = torch.Size([1, 11, 84, 84]) | |
| outputs[3].shape = torch.Size([1, 11, 43, 43]) | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| conv_cfg=None, | |
| norm_cfg=None, | |
| act_cfg=dict(type='ReLU')): | |
| super(ChannelMapper, self).__init__() | |
| assert isinstance(in_channels, list) | |
| self.convs = nn.ModuleList() | |
| for in_channel in in_channels: | |
| self.convs.append( | |
| ConvModule( | |
| in_channel, | |
| out_channels, | |
| kernel_size, | |
| padding=(kernel_size - 1) // 2, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg)) | |
| # default init_weights for conv(msra) and norm in ConvModule | |
| def init_weights(self): | |
| """Initialize the weights of ChannelMapper module.""" | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| xavier_init(m, distribution='uniform') | |
| def forward(self, inputs): | |
| """Forward function.""" | |
| assert len(inputs) == len(self.convs) | |
| outs = [self.convs[i](inputs[i]) for i in range(len(inputs))] | |
| return tuple(outs) | |