RobPruzan's picture
Updating description
e1ca6eb
raw
history blame
11.4 kB
import csv
import statistics
import string
import gensim.downloader as api
import gradio as gr
import nltk
import pandas as pd
import readability
import seaborn as sns
import torch
from fuzzywuzzy import fuzz
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.metrics.pairwise import cosine_similarity
from transformers import DistilBertTokenizer
from transformers import pipeline
nltk.download('cmudict')
nltk.download('stopwords')
nltk.download('punkt')
glove_vectors = api.load('glove-wiki-gigaword-100')
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
device = torch.device('cuda' if torch.cuda.is_available else 'cpu')
# loading model
PATH = 'pytorchBERTmodel'
model = torch.load(PATH, map_location=torch.device('cpu'))
model.eval()
model.to('cpu')
p = pipeline("automatic-speech-recognition")
w2v = dict({})
for idx, key in enumerate(glove_vectors.key_to_index.keys()):
w2v[key] = glove_vectors.get_vector(key)
def calculate_diversity(text):
stop_words = set(stopwords.words('english'))
for i in string.punctuation:
stop_words.add(i)
tokenized_text = word_tokenize(text)
tokenized_text = list(map(lambda word: word.lower(), tokenized_text))
sim_words = {}
if len(tokenized_text) <= 1:
return 1,"More Text Required"
for idx, anc_word in enumerate(tokenized_text):
if anc_word in stop_words:
continue
vocab = [anc_word]
for pos, comp_word in enumerate(tokenized_text):
if anc_word in sim_words.get(pos, []):
if anc_word == sim_words[pos][0]:
sim_words[idx] = sim_words[pos]
continue
try:
if not comp_word in stop_words and cosine_similarity(w2v[anc_word].reshape(1, -1), w2v[comp_word].reshape(1, -1)) > .75:
vocab.append(comp_word)
sim_words[idx] = vocab
except KeyError:
continue
scores = {}
for key, value in sim_words.items():
if len(value) == 1:
scores[key] = 1
continue
if len(value) == 2:
scores[key] = -1
continue
t_sim = len(value) - 1
t_rep = (len(value) - 1) - (len(set(value[1:])))
score = ((t_sim - t_rep)/t_sim)**2
scores[key] = score
mean_score = 0
total = 0
for value in scores.values():
if value == -1:
continue
mean_score += value
total += 1
return scores, mean_score/total
def dict_to_list(dictionary, max_size=10):
outer_list = []
inner_list = []
for value in dictionary.values():
inner_list.append(value)
if len(inner_list) == max_size:
outer_list.append(inner_list)
inner_list = []
if len(inner_list) > 0:
outer_list.append(inner_list)
return outer_list
def heatmap(scores, df):
total = 0
loops = 0
for ratio in scores.values():
# conditional to visualize the difference between no ratio and a 0 ratio score
if ratio != -.3:
total += ratio
loops += 1
diversity_average = total / loops
return sns.heatmap(df, cmap='gist_gray_r', vmin=-.3).set(
title='Word Diversity Score Heatmap (Average Score: ' + str(diversity_average) + ')')
def stats(text):
results = readability.getmeasures(text, lang='en')
return results
def predict(text, tokenizer=tokenizer):
model.eval()
model.to('cpu')
def prepare_data(text, tokenizer):
input_ids = []
attention_masks = []
encoded_text = tokenizer.encode_plus(
text,
truncation=True,
add_special_tokens=True,
max_length=315,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt'
)
input_ids.append(encoded_text['input_ids'])
attention_masks.append(encoded_text['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
return {'input_ids': input_ids, 'attention_masks': attention_masks}
tokenized_example_text = prepare_data(text, tokenizer)
with torch.no_grad():
result = model(
tokenized_example_text['input_ids'].to('cpu'),
attention_mask=tokenized_example_text['attention_masks'].to('cpu'),
return_dict=True
).logits
return result
def reading_difficulty(excerpt):
if len(excerpt) == 0:
return "No Text Provided"
windows = []
words = tokenizer.tokenize(excerpt)
if len(words) > 301:
for idx, text in enumerate(words):
if idx % 300 == 0:
if idx <= len(words) - 301:
x = ' '.join(words[idx: idx + 299])
windows.append(x)
win_preds = []
for text in windows:
win_preds.append(predict(text, tokenizer).item())
result = statistics.mean(win_preds)
score = -(result * 1.786 + 6.4) + 10
return score
else:
result = predict(excerpt).item()
score = -(result * 1.786 + 6.4) + 10
return score
def calculate_stats(file_name, data_index):
# unicode escape only for essays
with open(file_name, encoding='unicode_escape') as f:
information = {'lines': 0, 'words_per_sentence': 0, 'words': 0, 'syll_per_word': 0, 'characters_per_word': 0,
'reading_difficulty': 0}
reader = csv.reader(f)
for line in reader:
if len(line[data_index]) < 100:
continue
# if detect(line[data_index][len(line[data_index]) -400: len(line[data_index])-1]) == 'en':
try:
stat = stats(line[data_index])
except ValueError:
continue
information['lines'] += 1
information['words_per_sentence'] += stat['sentence info']['words_per_sentence']
information['words'] += stat['sentence info']['words']
information['syll_per_word'] += stat['sentence info']['syll_per_word']
information['characters_per_word'] += stat['sentence info']['characters_per_word']
information['reading_difficulty'] += reading_difficulty(line[data_index])
for i in information:
if i != 'lines' and i != 'words':
information[i] /= information['lines']
return information
def transcribe(audio):
# speech to text using pipeline
text = p(audio)["text"]
transcription.append(text)
return text
def compute_score(target, actual):
target = target.lower()
actual = actual.lower()
return fuzz.ratio(target, actual)
def phon(text):
alph = nltk.corpus.cmudict.dict()
text = word_tokenize(text)
pronun = []
for word in text:
try:
pronun.append(alph[word][0])
except Exception as e:
pronun.append(word)
return pronun
def gradio_fn(text, audio, target, actual_audio):
if text is None and audio is None and target is None and actual_audio is None:
return "No Inputs", "No Inputs", "No Inputs", "No Inputs"
speech_score = 0
if actual_audio is not None:
actual = p(actual_audio)["text"]
speech_score = compute_score(target, actual)
return "Difficulty Score: " + str(reading_difficulty(actual)), "Transcript: " + str(
actual.lower()), "Diversity Score: " + str(calculate_diversity(target)[1]), "Speech Score: " + str(speech_score)
div = calculate_diversity(text)
transcription = []
if audio is not None:
text = p(audio)["text"]
transcription.append(text)
state = div[0]
return "Difficulty Score: " + str(reading_difficulty(text)), "Transcript: " + str(
transcription[-1].lower()), "Diversity Score: " + str(div[1]), "No Inputs"
return "Difficulty Score: " + str(reading_difficulty(text)), "Diversity Score: " + str(
div[1]), "No Audio Provided", "No Audio Provided"
def plot():
text = state
diversity = calculate_diversity(text)[0]
df = pd.DataFrame(dict_to_list(diversity))
return heatmap(diversity, df)
example_data = []
x = 0
with open('train.csv') as f:
reader = csv.reader(f)
next(reader)
for line in reader:
example_data.append([line[3]])
x += 1
if x > 100:
break
state = {}
interface = gr.Interface(
fn=gradio_fn,
inputs=[gr.components.Textbox(
label="Text Difficulty Scoring",
lines = 6),
gr.components.Audio(
label="Speech Translation",
source="microphone",
type="filepath"),
gr.components.Textbox(
label="Type Your Target Text to Recite",
placeholder="How much wood would a woodchuck chuck if a woodchuck could chuck wood?"
),
gr.components.Audio(
label="Read Text Typed Above for Pronunciation Score",
source="microphone",
type="filepath")
],
outputs=["text", "text", "text", "text"],
theme="huggingface",
description="Enter text or speak into your microphone to have your text analyzed!",
rounded=True,
container=True,
article="""
Text Difficulty Score- Using a fine-tuned Distil-Bert model, we automatically determine how difficult something is to read while incorporating underlying semantics.
To efficiently compute text difficulty, a Distil-Bert pre-trained model is fine-tuned for regression using The CommonLit Ease of Readability (CLEAR)
Corpus. https://educationaldatamining.org/EDM2021/virtual/static/pdf/EDM21_paper_35.pdf This dataset contains over 110,000 pairwise comparisons of
~1100 teachers responded to the question, "Which text is easier for students to understand?". This model is trained end-end (regression layer down to
the first attention layer) to ensure the best performance- Merchant et al. 2020
Speech Pronunciaion Scoring: The Wave2Vec 2.0 model is utilized to convert audio into text in real-time. The model predicts words or phonemes (smallest
unit of speech distinguishing one word (or word element) from another) from the user input audio. Due to the nature of the model, users with poor
pronunciation receive inaccurate translations. This project attempts to score pronunciation by asking a user to read a target excerpt into the microphone. We then
pass this audio through Wave2Vec 2.0 to get the inferred intended words. We measure the loss as the Levenshtein distance between the target and actual transcripts-
the Levenshtein distance between two words is the minimum number of single-character edits required to change one word into the other.
Lexical Diversity Score: The lexical diversity score is computed by taking the ratio of unique similar words to total similar words squared. The similarity is computed
as if the cosine similarity of the word2vec embeddings is greater than .75. It is bad writing/speech practice to repeat the same words when it's possible not to.
Vocabulary diversity is generally computed by taking the ratio of unique strings/ total strings. This does not give an indication if the person has a large vocabulary
or if the topic does not require a diverse vocabulary to express it. Words that are not in the Word2Vec vocabulary will not be incorporated into the score.
"""
).launch()