WiggleGAN / dataloader.py
Rodrigo_Cobo
added thesis
cc6c676
raw
history blame
11.5 kB
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torch.utils.data import Dataset
import torch
from configparser import ConfigParser
import matplotlib.pyplot as plt
import os
import torch as th
from PIL import Image
import numpy as np
import random
from PIL import ImageMath
import random
def dataloader(dataset, input_size, batch_size,dim,split='train', trans=False):
#transform = transforms.Compose([transforms.Resize((input_size, input_size)), transforms.ToTensor(),
# transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
if dataset == 'mnist':
data_loader = DataLoader(
datasets.MNIST('data/mnist', train=True, download=True, transform=transform),
batch_size=batch_size, shuffle=True)
elif dataset == 'fashion-mnist':
data_loader = DataLoader(
datasets.FashionMNIST('data/fashion-mnist', train=True, download=True, transform=transform),
batch_size=batch_size, shuffle=True)
elif dataset == 'cifar10':
data_loader = DataLoader(
datasets.CIFAR10('data/cifar10', train=True, download=True, transform=transform),
batch_size=batch_size, shuffle=True)
elif dataset == 'svhn':
data_loader = DataLoader(
datasets.SVHN('data/svhn', split=split, download=True, transform=transform),
batch_size=batch_size, shuffle=True)
elif dataset == 'stl10':
data_loader = DataLoader(
datasets.STL10('data/stl10', split=split, download=True, transform=transform),
batch_size=batch_size, shuffle=True)
elif dataset == 'lsun-bed':
data_loader = DataLoader(
datasets.LSUN('data/lsun', classes=['bedroom_train'], transform=transform),
batch_size=batch_size, shuffle=True)
elif dataset == '4cam':
if split == 'score':
cams = ScoreDataset(root_dir=os.getcwd() + '/Images/Score-Test', dim=dim, name=split, cant_images=300) #hardcode is bad but quick
return DataLoader(cams, batch_size=batch_size, shuffle=False, num_workers=0)
if split != 'test':
cams = ImagesDataset(root_dir=os.getcwd() + '/Images/ActualDataset', dim=dim, name=split, transform=trans)
return DataLoader(cams, batch_size=batch_size, shuffle=True, num_workers=0)
else:
cams = TestingDataset(root_dir=os.getcwd() + '/Images/Input-Test', dim=dim, name=split)
return DataLoader(cams, batch_size=batch_size, shuffle=False, num_workers=0)
return data_loader
class ImagesDataset(Dataset):
"""My dataset."""
def __init__(self, root_dir, dim, name, transform):
"""
Args:
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.root_dir = root_dir
self.nCameras = 2
self.imageDim = dim
self.name = name
self.parser = ConfigParser()
self.parser.read('config.ini')
self.transform = transform
def __len__(self):
return self.parser.getint(self.name, 'total')
#oneCameRoot = self.root_dir + '\CAM1'
#return int(len([name for name in os.listdir(oneCameRoot) if os.path.isfile(os.path.join(oneCameRoot, name))])/2) #por el depth
def __getitem__(self, idx):
if th.is_tensor(idx):
idx = idx.tolist()
idx = self.parser.get(self.name, str(idx))
if self.transform:
brighness = random.uniform(0.7, 1.2)
saturation = random.uniform(0, 2)
contrast = random.uniform(0.4, 2)
gamma = random.uniform(0.7, 1.3)
hue = random.uniform(-0.3, 0.3) # 0.01
oneCameRoot = self.root_dir + '/CAM0'
# foto normal
img_name = os.path.join(oneCameRoot, "n_" + idx + ".png")
img = Image.open(img_name).convert('RGB') # .convert('L')
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
if self.transform:
img = transforms.functional.adjust_gamma(img, gamma)
img = transforms.functional.adjust_brightness(img, brighness)
img = transforms.functional.adjust_contrast(img, contrast)
img = transforms.functional.adjust_saturation(img, saturation)
img = transforms.functional.adjust_hue(img, hue)
x1 = transforms.ToTensor()(img)
x1 = (x1 * 2) - 1
# foto produndidad
img_name = os.path.join(oneCameRoot, "d_" + idx + ".png")
img = Image.open(img_name).convert('I')
img = convert_I_to_L(img)
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
x1_dep = transforms.ToTensor()(img)
x1_dep = (x1_dep * 2) - 1
oneCameRoot = self.root_dir + '/CAM1'
# foto normal
img_name = os.path.join(oneCameRoot, "n_" + idx + ".png")
img = Image.open(img_name).convert('RGB') # .convert('L')
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
if self.transform:
img = transforms.functional.adjust_gamma(img, gamma)
img = transforms.functional.adjust_brightness(img, brighness)
img = transforms.functional.adjust_contrast(img, contrast)
img = transforms.functional.adjust_saturation(img, saturation)
img = transforms.functional.adjust_hue(img, hue)
x2 = transforms.ToTensor()(img)
x2 = (x2 * 2) - 1
# foto produndidad
img_name = os.path.join(oneCameRoot, "d_" + idx + ".png")
img = Image.open(img_name).convert('I')
img = convert_I_to_L(img)
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
x2_dep = transforms.ToTensor()(img)
x2_dep = (x2_dep * 2) - 1
#random izq o derecha
if (bool(random.getrandbits(1))):
sample = {'x_im': x1, 'x_dep': x1_dep, 'y_im': x2, 'y_dep': x2_dep, 'y_': torch.ones(1, self.imageDim, self.imageDim)}
else:
sample = {'x_im': x2, 'x_dep': x2_dep, 'y_im': x1, 'y_dep': x1_dep, 'y_': torch.zeros(1, self.imageDim, self.imageDim)}
return sample
def __iter__(self):
for i in range(this.__len__()):
list.append(this.__getitem__(i))
return iter(list)
class TestingDataset(Dataset):
"""My dataset."""
def __init__(self, root_dir, dim, name):
"""
Args:
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.root_dir = root_dir
self.imageDim = dim
self.name = name
files = os.listdir(self.root_dir)
self.files = [ele for ele in files if not ele.endswith('_d.png')]
def __len__(self):
#return self.parser.getint(self.name, 'total')
#oneCameRoot = self.root_dir + '\CAM1'
#return int(len([name for name in os.listdir(self.root_dir) if os.path.isfile(os.path.join(self.root_dir, name))])/2) #por el depth
return len(self.files)
def __getitem__(self, idx):
if th.is_tensor(idx):
idx = idx.tolist()
# foto normal
img_name = os.path.join(self.root_dir, self.files[idx])
img = Image.open(img_name).convert('RGB') # .convert('L')
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
x1 = transforms.ToTensor()(img)
x1 = (x1 * 2) - 1
# foto produndidad
img_name = os.path.join(self.root_dir , self.files[idx][:-4] + "_d.png")
img = Image.open(img_name).convert('I')
img = convert_I_to_L(img)
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
x1_dep = transforms.ToTensor()(img)
x1_dep = (x1_dep * 2) - 1
sample = {'x_im': x1, 'x_dep': x1_dep}
return sample
def __iter__(self):
for i in range(this.__len__()):
list.append(this.__getitem__(i))
return iter(list)
def show_image(t_data, grey=False):
#from numpy
t_data2 = t_data.transpose(1, 2, 0)
t_data2 = t_data2 * 255.0
t_data2 = t_data2.astype(np.uint8)
if (not grey):
outIm = Image.fromarray(t_data2, mode='RGB')
else:
t_data2 = np.squeeze(t_data2, axis=2)
outIm = Image.fromarray(t_data2, mode='L')
outIm.show()
def convert_I_to_L(img):
array = np.uint8(np.array(img) / 256) #el numero esta bien, sino genera espacios en negro en la imagen
return Image.fromarray(array)
class ScoreDataset(Dataset):
"""My dataset."""
def __init__(self, root_dir, dim, name, cant_images):
"""
Args:
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.root_dir = root_dir
self.nCameras = 2
self.imageDim = dim
self.name = name
self.size = cant_images
def __len__(self):
return self.size
def __getitem__(self, idx):
oneCameRoot = self.root_dir + '/CAM0'
idx = "{:04d}".format(idx)
# foto normal
img_name = os.path.join(oneCameRoot, "n_" + idx + ".png")
img = Image.open(img_name).convert('RGB') # .convert('L')
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
x1 = transforms.ToTensor()(img)
x1 = (x1 * 2) - 1
# foto produndidad
img_name = os.path.join(oneCameRoot, "d_" + idx + ".png")
img = Image.open(img_name).convert('I')
img = convert_I_to_L(img)
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
x1_dep = transforms.ToTensor()(img)
x1_dep = (x1_dep * 2) - 1
oneCameRoot = self.root_dir + '/CAM1'
# foto normal
img_name = os.path.join(oneCameRoot, "n_" + idx + ".png")
img = Image.open(img_name).convert('RGB') # .convert('L')
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
x2 = transforms.ToTensor()(img)
x2 = (x2 * 2) - 1
# foto produndidad
img_name = os.path.join(oneCameRoot, "d_" + idx + ".png")
img = Image.open(img_name).convert('I')
img = convert_I_to_L(img)
if (img.size[0] != self.imageDim or img.size[1] != self.imageDim):
img = img.resize((self.imageDim, self.imageDim))
x2_dep = transforms.ToTensor()(img)
x2_dep = (x2_dep * 2) - 1
sample = {'x_im': x1, 'x_dep': x1_dep, 'y_im': x2, 'y_dep': x2_dep, 'y_': torch.ones(1, self.imageDim, self.imageDim)}
return sample
def __iter__(self):
for i in range(self.__len__()):
list.append(self.__getitem__(i))
return iter(list)