Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torchvision import transforms | |
from PIL import Image | |
from torchvision.models import resnet18 | |
class ResNet18Classifier(nn.Module): | |
def __init__(self, num_classes=3): | |
super().__init__() | |
self.resnet = resnet18(weights=None) # modern way | |
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, num_classes) | |
def forward(self, x): | |
return self.resnet(x) | |
def load_model(model_path="model/best_classification_model.pth", num_classes=3): | |
model = ResNet18Classifier(num_classes=num_classes) | |
state_dict = torch.load(model_path, map_location='cpu') | |
model.load_state_dict(state_dict) | |
model.eval() | |
return model | |
def predict_image(image_path, model, class_names): | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
]) | |
image = Image.open(image_path).convert('RGB') | |
image_tensor = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
outputs = model(image_tensor) | |
_, predicted = torch.max(outputs, 1) | |
return class_names[predicted.item()] | |