Update LLM.py
Browse files
LLM.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
-
# LLM.py (V13.
|
| 2 |
-
# استعادة كامل التفاصيل في البرومبتات لضمان عدم وجود أي اختصارات.
|
| 3 |
-
|
| 4 |
import os, traceback, json, re, time
|
| 5 |
from datetime import datetime
|
| 6 |
from typing import Dict, Any, Optional
|
| 7 |
from openai import AsyncOpenAI, RateLimitError, APIError
|
| 8 |
|
| 9 |
# ==============================================================================
|
| 10 |
-
# 🔌 إعدادات الاتصال
|
| 11 |
# ==============================================================================
|
| 12 |
LLM_API_URL = os.getenv("LLM_API_URL", "https://integrate.api.nvidia.com/v1")
|
| 13 |
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
|
@@ -32,14 +30,10 @@ class LLMService:
|
|
| 32 |
)
|
| 33 |
self.r2_service = None
|
| 34 |
self.learning_hub = None
|
| 35 |
-
|
| 36 |
-
print(f"🧠 [LLM V13.4] Heavyweight Brain Initialized: {LLM_MODEL}")
|
| 37 |
|
| 38 |
async def _call_llm(self, prompt: str) -> Optional[str]:
|
| 39 |
-
"""إرسال الطلب مع تفعيل وضع التفكير العميق بدقة"""
|
| 40 |
-
# ⚠️ هام: هذا الإعداد دقيق جداً لتفعيل قدرات Nemotron الخاصة
|
| 41 |
system_prompt = "detailed thinking on"
|
| 42 |
-
|
| 43 |
try:
|
| 44 |
response = await self.client.chat.completions.create(
|
| 45 |
model=LLM_MODEL,
|
|
@@ -61,7 +55,6 @@ class LLMService:
|
|
| 61 |
return None
|
| 62 |
|
| 63 |
def _parse_json_secure(self, text: str) -> Optional[Dict]:
|
| 64 |
-
"""محلل JSON قوي يستخرج البيانات من أي نص"""
|
| 65 |
try:
|
| 66 |
match = re.search(r'\{.*\}', text, re.DOTALL)
|
| 67 |
if match: return json.loads(match.group(0))
|
|
@@ -69,24 +62,19 @@ class LLMService:
|
|
| 69 |
return None
|
| 70 |
|
| 71 |
# ==================================================================
|
| 72 |
-
# 🧠
|
| 73 |
# ==================================================================
|
| 74 |
async def get_trading_decision(self, candidate_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 75 |
symbol = candidate_data.get('symbol', 'UNKNOWN')
|
| 76 |
try:
|
| 77 |
-
|
| 78 |
-
learning_context = "Playbook: No specific prior learning for this scenario."
|
| 79 |
if self.learning_hub:
|
| 80 |
learning_context = await self.learning_hub.get_active_context_for_llm("general", f"{symbol} entry analysis")
|
| 81 |
|
| 82 |
-
# بناء البرومبت المفصل جداً
|
| 83 |
prompt = self._create_heavyweight_entry_prompt(candidate_data, learning_context)
|
| 84 |
-
|
| 85 |
-
# استدعاء النموذج
|
| 86 |
response_text = await self._call_llm(prompt)
|
| 87 |
decision = self._parse_json_secure(response_text)
|
| 88 |
|
| 89 |
-
# حفظ نسخة طبق الأصل من الطلب والرد للتدقيق
|
| 90 |
if self.r2_service and response_text:
|
| 91 |
await self.r2_service.save_llm_prompt_async(symbol, "entry_decision_full", prompt, response_text)
|
| 92 |
|
|
@@ -96,9 +84,6 @@ class LLMService:
|
|
| 96 |
traceback.print_exc()
|
| 97 |
return None
|
| 98 |
|
| 99 |
-
# ==================================================================
|
| 100 |
-
# 🔄 الوظيفة 2: إعادة التحليل الدوري (مراجعة شاملة للوضع)
|
| 101 |
-
# ==================================================================
|
| 102 |
async def re_analyze_trade_async(self, trade_data: Dict[str, Any], current_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 103 |
symbol = trade_data.get('symbol', 'UNKNOWN')
|
| 104 |
try:
|
|
@@ -108,7 +93,6 @@ class LLMService:
|
|
| 108 |
learning_context = await self.learning_hub.get_active_context_for_llm("strategy", f"{symbol} re-eval {strategy}")
|
| 109 |
|
| 110 |
prompt = self._create_heavyweight_reanalysis_prompt(trade_data, current_data, learning_context)
|
| 111 |
-
|
| 112 |
response_text = await self._call_llm(prompt)
|
| 113 |
decision = self._parse_json_secure(response_text)
|
| 114 |
|
|
@@ -121,32 +105,26 @@ class LLMService:
|
|
| 121 |
return None
|
| 122 |
|
| 123 |
# ==================================================================
|
| 124 |
-
# 📝
|
| 125 |
# ==================================================================
|
| 126 |
def _create_heavyweight_entry_prompt(self, data: Dict[str, Any], learning_context: str) -> str:
|
| 127 |
-
"""
|
| 128 |
-
إنشاء برومبت ضخم يحتوي على كل شاردة وواردة من البيانات المتاحة.
|
| 129 |
-
"""
|
| 130 |
symbol = data.get('symbol')
|
| 131 |
current_price = data.get('current_price')
|
| 132 |
|
| 133 |
-
# 1. تفاصيل الطبقات الس��بقة (التحليل الفني والكمي)
|
| 134 |
titan_score = data.get('titan_details', {}).get('score', 0)
|
| 135 |
titan_trend = "STRONG_UP" if titan_score > 0.7 else "UP" if titan_score > 0.5 else "WEAK"
|
| 136 |
-
|
| 137 |
pat_details = data.get('pattern_details', {})
|
| 138 |
pat_name = pat_details.get('pattern_detected', 'None')
|
| 139 |
pat_conf = pat_details.get('pattern_confidence', 0)
|
| 140 |
-
|
| 141 |
mc_score = data.get('components', {}).get('mc_score', 0)
|
|
|
|
|
|
|
| 142 |
l1_total = data.get('enhanced_final_score', 0)
|
| 143 |
l2_total = data.get('layer2_score', 0)
|
| 144 |
|
| 145 |
-
# 2. تفاصيل بيانات الحيتان (كاملة)
|
| 146 |
whale = data.get('whale_data', {})
|
| 147 |
whale_1h = whale.get('exchange_flows', {})
|
| 148 |
whale_24h = whale.get('accumulation_analysis_24h', {})
|
| 149 |
-
|
| 150 |
whale_section = f"""
|
| 151 |
- 1H Net Flow to Exchanges: ${whale_1h.get('net_flow_usd', 0):,.2f}
|
| 152 |
- 1H Deposits: {whale_1h.get('deposit_count', 0)} | Withdrawals: {whale_1h.get('withdrawal_count', 0)}
|
|
@@ -154,16 +132,11 @@ class LLMService:
|
|
| 154 |
- 24H Whale Transaction Count: {whale_24h.get('whale_transfers_count', 0)}
|
| 155 |
- Relative Flow Impact (24H): {whale_24h.get('relative_net_flow_percent', 0):.4f}%
|
| 156 |
"""
|
| 157 |
-
|
| 158 |
-
# 3. تفاصيل الأخبار (النص الخام الكامل)
|
| 159 |
-
news_text = data.get('news_text', 'No specific news available for this asset currently.')
|
| 160 |
-
|
| 161 |
-
# 4. لقطة السوق (Price Action Snapshot)
|
| 162 |
ohlcv = data.get('ohlcv_sample', {})
|
| 163 |
price_section = ""
|
| 164 |
for tf, candle in ohlcv.items():
|
| 165 |
if candle:
|
| 166 |
-
# [Timestamp, Open, High, Low, Close, Volume]
|
| 167 |
price_section += f" - {tf.upper()}: Open={candle[1]}, High={candle[2]}, Low={candle[3]}, Close={candle[4]}, Vol={candle[5]}\n"
|
| 168 |
|
| 169 |
return f"""
|
|
@@ -173,7 +146,7 @@ Current Price: {current_price}
|
|
| 173 |
|
| 174 |
========== 🧠 PART 1: SUB-SYSTEM REPORTS (PRELIMINARY ANALYSIS) ==========
|
| 175 |
Your subordinate systems have flagged this asset with the following scores:
|
| 176 |
-
* Layer 1 Technical Score: {
|
| 177 |
- Titan ML Trend Model: {titan_score:.4f} ({titan_trend})
|
| 178 |
- Chart Pattern Recognition: {pat_name} (Confidence: {pat_conf:.2f})
|
| 179 |
- Monte Carlo Probability (1H): {mc_score:.4f}
|
|
@@ -206,28 +179,21 @@ REQUIRED OUTPUT (Strict JSON format ONLY):
|
|
| 206 |
{{
|
| 207 |
"action": "WATCH" or "IGNORE",
|
| 208 |
"confidence_level": 0.00 to 1.00,
|
| 209 |
-
"reasoning": "A rigorous, professional justification citing specific raw evidence
|
| 210 |
"strategy_directive": "MOMENTUM_BREAKOUT" or "DIP_ACCUMULATION" or "SCALP_REVERSAL",
|
| 211 |
"key_risk_factor": "Identify the single biggest risk based on raw evidence."
|
| 212 |
}}
|
| 213 |
"""
|
| 214 |
|
| 215 |
def _create_heavyweight_reanalysis_prompt(self, trade: Dict, current: Dict, learning_context: str) -> str:
|
| 216 |
-
"""
|
| 217 |
-
إنشاء برومبت مفصل لإعادة تقييم صفقة مفتوحة بناءً على تغير الظروف.
|
| 218 |
-
"""
|
| 219 |
symbol = trade.get('symbol')
|
| 220 |
entry_price = trade.get('entry_price')
|
| 221 |
current_price = current.get('current_price')
|
| 222 |
pnl_pct = ((current_price - entry_price) / entry_price) * 100
|
| 223 |
-
duration_min = (datetime.now() - datetime.fromisoformat(trade.get('entry_time').replace('Z', ''))).total_seconds() / 60
|
| 224 |
-
|
| 225 |
-
# البيانات الحالية المقارنة
|
| 226 |
titan_now = current.get('titan_score', 0)
|
| 227 |
-
|
| 228 |
whale_now = current.get('whale_data', {})
|
| 229 |
whale_1h_net = whale_now.get('exchange_flows', {}).get('net_flow_usd', 0)
|
| 230 |
-
|
| 231 |
news_now = current.get('news_text', 'No new significant news.')
|
| 232 |
|
| 233 |
return f"""
|
|
@@ -245,7 +211,6 @@ TIME IN TRADE: {duration_min:.1f} minutes
|
|
| 245 |
========== 🆕 CHANGED MARKET CONDITIONS (RAW DATA) ==========
|
| 246 |
1. ML Trend Update (Titan): Currently {titan_now:.4f}
|
| 247 |
2. Fresh Whale Activity (Last 1H): Net Flow ${whale_1h_net:,.0f}
|
| 248 |
-
(Positive = potential selling pressure, Negative = accumulation)
|
| 249 |
3. Latest News Update:
|
| 250 |
\"\"\"{news_now[:1000]}\"\"\"
|
| 251 |
|
|
@@ -262,5 +227,4 @@ Output Strict JSON ONLY:
|
|
| 262 |
"reasoning": "Professional assessment of current risk vs original thesis."
|
| 263 |
}}
|
| 264 |
"""
|
| 265 |
-
|
| 266 |
print("✅ LLM Service V13.4 (Heavyweight Omniscient Brain) Loaded - NO SHORTCUTS")
|
|
|
|
| 1 |
+
# LLM.py (V13.5 - Fixed Variable Name Error)
|
|
|
|
|
|
|
| 2 |
import os, traceback, json, re, time
|
| 3 |
from datetime import datetime
|
| 4 |
from typing import Dict, Any, Optional
|
| 5 |
from openai import AsyncOpenAI, RateLimitError, APIError
|
| 6 |
|
| 7 |
# ==============================================================================
|
| 8 |
+
# 🔌 إعدادات الاتصال
|
| 9 |
# ==============================================================================
|
| 10 |
LLM_API_URL = os.getenv("LLM_API_URL", "https://integrate.api.nvidia.com/v1")
|
| 11 |
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
|
|
|
| 30 |
)
|
| 31 |
self.r2_service = None
|
| 32 |
self.learning_hub = None
|
| 33 |
+
print(f"🧠 [LLM V13.5] Brain Online: {LLM_MODEL}")
|
|
|
|
| 34 |
|
| 35 |
async def _call_llm(self, prompt: str) -> Optional[str]:
|
|
|
|
|
|
|
| 36 |
system_prompt = "detailed thinking on"
|
|
|
|
| 37 |
try:
|
| 38 |
response = await self.client.chat.completions.create(
|
| 39 |
model=LLM_MODEL,
|
|
|
|
| 55 |
return None
|
| 56 |
|
| 57 |
def _parse_json_secure(self, text: str) -> Optional[Dict]:
|
|
|
|
| 58 |
try:
|
| 59 |
match = re.search(r'\{.*\}', text, re.DOTALL)
|
| 60 |
if match: return json.loads(match.group(0))
|
|
|
|
| 62 |
return None
|
| 63 |
|
| 64 |
# ==================================================================
|
| 65 |
+
# 🧠 الوظائف الرئيسية
|
| 66 |
# ==================================================================
|
| 67 |
async def get_trading_decision(self, candidate_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 68 |
symbol = candidate_data.get('symbol', 'UNKNOWN')
|
| 69 |
try:
|
| 70 |
+
learning_context = "Playbook: No specific prior learning."
|
|
|
|
| 71 |
if self.learning_hub:
|
| 72 |
learning_context = await self.learning_hub.get_active_context_for_llm("general", f"{symbol} entry analysis")
|
| 73 |
|
|
|
|
| 74 |
prompt = self._create_heavyweight_entry_prompt(candidate_data, learning_context)
|
|
|
|
|
|
|
| 75 |
response_text = await self._call_llm(prompt)
|
| 76 |
decision = self._parse_json_secure(response_text)
|
| 77 |
|
|
|
|
| 78 |
if self.r2_service and response_text:
|
| 79 |
await self.r2_service.save_llm_prompt_async(symbol, "entry_decision_full", prompt, response_text)
|
| 80 |
|
|
|
|
| 84 |
traceback.print_exc()
|
| 85 |
return None
|
| 86 |
|
|
|
|
|
|
|
|
|
|
| 87 |
async def re_analyze_trade_async(self, trade_data: Dict[str, Any], current_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 88 |
symbol = trade_data.get('symbol', 'UNKNOWN')
|
| 89 |
try:
|
|
|
|
| 93 |
learning_context = await self.learning_hub.get_active_context_for_llm("strategy", f"{symbol} re-eval {strategy}")
|
| 94 |
|
| 95 |
prompt = self._create_heavyweight_reanalysis_prompt(trade_data, current_data, learning_context)
|
|
|
|
| 96 |
response_text = await self._call_llm(prompt)
|
| 97 |
decision = self._parse_json_secure(response_text)
|
| 98 |
|
|
|
|
| 105 |
return None
|
| 106 |
|
| 107 |
# ==================================================================
|
| 108 |
+
# 📝 هندسة البرومبتات (مصححة)
|
| 109 |
# ==================================================================
|
| 110 |
def _create_heavyweight_entry_prompt(self, data: Dict[str, Any], learning_context: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 111 |
symbol = data.get('symbol')
|
| 112 |
current_price = data.get('current_price')
|
| 113 |
|
|
|
|
| 114 |
titan_score = data.get('titan_details', {}).get('score', 0)
|
| 115 |
titan_trend = "STRONG_UP" if titan_score > 0.7 else "UP" if titan_score > 0.5 else "WEAK"
|
|
|
|
| 116 |
pat_details = data.get('pattern_details', {})
|
| 117 |
pat_name = pat_details.get('pattern_detected', 'None')
|
| 118 |
pat_conf = pat_details.get('pattern_confidence', 0)
|
|
|
|
| 119 |
mc_score = data.get('components', {}).get('mc_score', 0)
|
| 120 |
+
|
| 121 |
+
# ✅ تصحيح الاسم هنا واستخدامه بالأسفل
|
| 122 |
l1_total = data.get('enhanced_final_score', 0)
|
| 123 |
l2_total = data.get('layer2_score', 0)
|
| 124 |
|
|
|
|
| 125 |
whale = data.get('whale_data', {})
|
| 126 |
whale_1h = whale.get('exchange_flows', {})
|
| 127 |
whale_24h = whale.get('accumulation_analysis_24h', {})
|
|
|
|
| 128 |
whale_section = f"""
|
| 129 |
- 1H Net Flow to Exchanges: ${whale_1h.get('net_flow_usd', 0):,.2f}
|
| 130 |
- 1H Deposits: {whale_1h.get('deposit_count', 0)} | Withdrawals: {whale_1h.get('withdrawal_count', 0)}
|
|
|
|
| 132 |
- 24H Whale Transaction Count: {whale_24h.get('whale_transfers_count', 0)}
|
| 133 |
- Relative Flow Impact (24H): {whale_24h.get('relative_net_flow_percent', 0):.4f}%
|
| 134 |
"""
|
| 135 |
+
news_text = data.get('news_text', 'No specific news available.')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
ohlcv = data.get('ohlcv_sample', {})
|
| 137 |
price_section = ""
|
| 138 |
for tf, candle in ohlcv.items():
|
| 139 |
if candle:
|
|
|
|
| 140 |
price_section += f" - {tf.upper()}: Open={candle[1]}, High={candle[2]}, Low={candle[3]}, Close={candle[4]}, Vol={candle[5]}\n"
|
| 141 |
|
| 142 |
return f"""
|
|
|
|
| 146 |
|
| 147 |
========== 🧠 PART 1: SUB-SYSTEM REPORTS (PRELIMINARY ANALYSIS) ==========
|
| 148 |
Your subordinate systems have flagged this asset with the following scores:
|
| 149 |
+
* Layer 1 Technical Score: {l1_total:.4f} / 1.0 <-- ✅ تم التصحيح هنا
|
| 150 |
- Titan ML Trend Model: {titan_score:.4f} ({titan_trend})
|
| 151 |
- Chart Pattern Recognition: {pat_name} (Confidence: {pat_conf:.2f})
|
| 152 |
- Monte Carlo Probability (1H): {mc_score:.4f}
|
|
|
|
| 179 |
{{
|
| 180 |
"action": "WATCH" or "IGNORE",
|
| 181 |
"confidence_level": 0.00 to 1.00,
|
| 182 |
+
"reasoning": "A rigorous, professional justification citing specific raw evidence.",
|
| 183 |
"strategy_directive": "MOMENTUM_BREAKOUT" or "DIP_ACCUMULATION" or "SCALP_REVERSAL",
|
| 184 |
"key_risk_factor": "Identify the single biggest risk based on raw evidence."
|
| 185 |
}}
|
| 186 |
"""
|
| 187 |
|
| 188 |
def _create_heavyweight_reanalysis_prompt(self, trade: Dict, current: Dict, learning_context: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 189 |
symbol = trade.get('symbol')
|
| 190 |
entry_price = trade.get('entry_price')
|
| 191 |
current_price = current.get('current_price')
|
| 192 |
pnl_pct = ((current_price - entry_price) / entry_price) * 100
|
| 193 |
+
duration_min = (datetime.now(timezone.utc) - datetime.fromisoformat(trade.get('entry_time').replace('Z', '+00:00'))).total_seconds() / 60
|
|
|
|
|
|
|
| 194 |
titan_now = current.get('titan_score', 0)
|
|
|
|
| 195 |
whale_now = current.get('whale_data', {})
|
| 196 |
whale_1h_net = whale_now.get('exchange_flows', {}).get('net_flow_usd', 0)
|
|
|
|
| 197 |
news_now = current.get('news_text', 'No new significant news.')
|
| 198 |
|
| 199 |
return f"""
|
|
|
|
| 211 |
========== 🆕 CHANGED MARKET CONDITIONS (RAW DATA) ==========
|
| 212 |
1. ML Trend Update (Titan): Currently {titan_now:.4f}
|
| 213 |
2. Fresh Whale Activity (Last 1H): Net Flow ${whale_1h_net:,.0f}
|
|
|
|
| 214 |
3. Latest News Update:
|
| 215 |
\"\"\"{news_now[:1000]}\"\"\"
|
| 216 |
|
|
|
|
| 227 |
"reasoning": "Professional assessment of current risk vs original thesis."
|
| 228 |
}}
|
| 229 |
"""
|
|
|
|
| 230 |
print("✅ LLM Service V13.4 (Heavyweight Omniscient Brain) Loaded - NO SHORTCUTS")
|