Update LLM.py
Browse files
LLM.py
CHANGED
|
@@ -1,44 +1,56 @@
|
|
| 1 |
-
# LLM.py (V13.
|
| 2 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
from typing import Dict, Any, Optional
|
| 5 |
from openai import AsyncOpenAI, RateLimitError, APIError
|
| 6 |
|
| 7 |
# ==============================================================================
|
| 8 |
-
# 🔌 إعدادات الاتصال
|
| 9 |
# ==============================================================================
|
| 10 |
LLM_API_URL = os.getenv("LLM_API_URL", "https://integrate.api.nvidia.com/v1")
|
| 11 |
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
| 12 |
LLM_MODEL = os.getenv("LLM_MODEL", "nvidia/llama-3.1-nemotron-ultra-253b-v1")
|
| 13 |
|
|
|
|
| 14 |
LLM_TEMPERATURE = 0.2
|
| 15 |
LLM_TOP_P = 0.7
|
| 16 |
-
LLM_MAX_TOKENS = 16384
|
| 17 |
LLM_FREQUENCY_PENALTY = 0.8
|
| 18 |
LLM_PRESENCE_PENALTY = 0.5
|
| 19 |
-
CLIENT_TIMEOUT = 300.0
|
| 20 |
|
| 21 |
class LLMService:
|
| 22 |
def __init__(self):
|
| 23 |
if not LLM_API_KEY:
|
| 24 |
-
raise ValueError("❌ [LLM] LLM_API_KEY is missing!")
|
| 25 |
|
| 26 |
self.client = AsyncOpenAI(
|
| 27 |
base_url=LLM_API_URL,
|
| 28 |
api_key=LLM_API_KEY,
|
| 29 |
timeout=CLIENT_TIMEOUT
|
| 30 |
)
|
|
|
|
| 31 |
self.r2_service = None
|
| 32 |
self.learning_hub = None
|
| 33 |
-
|
|
|
|
| 34 |
|
| 35 |
async def _call_llm(self, prompt: str) -> Optional[str]:
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
response = await self.client.chat.completions.create(
|
| 39 |
model=LLM_MODEL,
|
| 40 |
messages=[
|
| 41 |
-
{"role": "system", "content":
|
| 42 |
{"role": "user", "content": prompt}
|
| 43 |
],
|
| 44 |
temperature=LLM_TEMPERATURE,
|
|
@@ -47,184 +59,271 @@ class LLMService:
|
|
| 47 |
frequency_penalty=LLM_FREQUENCY_PENALTY,
|
| 48 |
presence_penalty=LLM_PRESENCE_PENALTY,
|
| 49 |
stream=False,
|
| 50 |
-
response_format={"type": "json_object"}
|
| 51 |
)
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
except Exception as e:
|
| 54 |
-
print(f"❌ [LLM Call Error] {e}")
|
| 55 |
return None
|
| 56 |
|
| 57 |
def _parse_json_secure(self, text: str) -> Optional[Dict]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
try:
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
# ==================================================================
|
| 65 |
-
# 🧠
|
| 66 |
# ==================================================================
|
| 67 |
async def get_trading_decision(self, candidate_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
try:
|
| 70 |
-
|
|
|
|
| 71 |
if self.learning_hub:
|
| 72 |
learning_context = await self.learning_hub.get_active_context_for_llm("general", f"{symbol} entry analysis")
|
| 73 |
|
|
|
|
| 74 |
prompt = self._create_heavyweight_entry_prompt(candidate_data, learning_context)
|
|
|
|
|
|
|
| 75 |
response_text = await self._call_llm(prompt)
|
|
|
|
|
|
|
|
|
|
| 76 |
decision = self._parse_json_secure(response_text)
|
| 77 |
|
| 78 |
-
|
|
|
|
| 79 |
await self.r2_service.save_llm_prompt_async(symbol, "entry_decision_full", prompt, response_text)
|
| 80 |
|
| 81 |
return decision
|
|
|
|
| 82 |
except Exception as e:
|
| 83 |
-
print(f"❌ [LLM Entry Error] {symbol}: {e}")
|
| 84 |
traceback.print_exc()
|
| 85 |
return None
|
| 86 |
|
|
|
|
|
|
|
|
|
|
| 87 |
async def re_analyze_trade_async(self, trade_data: Dict[str, Any], current_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
| 89 |
try:
|
| 90 |
-
|
| 91 |
-
|
|
|
|
| 92 |
if self.learning_hub:
|
| 93 |
-
learning_context = await self.learning_hub.get_active_context_for_llm("strategy", f"{symbol} re-eval {
|
| 94 |
|
|
|
|
| 95 |
prompt = self._create_heavyweight_reanalysis_prompt(trade_data, current_data, learning_context)
|
|
|
|
|
|
|
| 96 |
response_text = await self._call_llm(prompt)
|
|
|
|
|
|
|
|
|
|
| 97 |
decision = self._parse_json_secure(response_text)
|
| 98 |
|
| 99 |
-
|
|
|
|
| 100 |
await self.r2_service.save_llm_prompt_async(symbol, "re_analysis_full", prompt, response_text)
|
| 101 |
|
| 102 |
return decision
|
|
|
|
| 103 |
except Exception as e:
|
| 104 |
-
print(f"❌ [LLM Re-Eval Error] {symbol}: {e}")
|
| 105 |
return None
|
| 106 |
|
| 107 |
# ==================================================================
|
| 108 |
-
# 📝 هندسة البرومبتات (
|
| 109 |
# ==================================================================
|
| 110 |
def _create_heavyweight_entry_prompt(self, data: Dict[str, Any], learning_context: str) -> str:
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
pat_details = data.get('pattern_details', {})
|
| 117 |
-
pat_name = pat_details.get('pattern_detected', 'None')
|
| 118 |
-
pat_conf = pat_details.get('pattern_confidence', 0)
|
| 119 |
-
mc_score = data.get('components', {}).get('mc_score', 0)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
| 124 |
|
|
|
|
|
|
|
| 125 |
whale = data.get('whale_data', {})
|
| 126 |
whale_1h = whale.get('exchange_flows', {})
|
| 127 |
whale_24h = whale.get('accumulation_analysis_24h', {})
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
- 1H
|
| 131 |
-
-
|
| 132 |
-
- 24H
|
| 133 |
-
-
|
|
|
|
| 134 |
"""
|
| 135 |
-
news_text = data.get('news_text', 'No specific news available.')
|
| 136 |
-
ohlcv = data.get('ohlcv_sample', {})
|
| 137 |
-
price_section = ""
|
| 138 |
-
for tf, candle in ohlcv.items():
|
| 139 |
-
if candle:
|
| 140 |
-
price_section += f" - {tf.upper()}: Open={candle[1]}, High={candle[2]}, Low={candle[3]}, Close={candle[4]}, Vol={candle[5]}\n"
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
return f"""
|
| 143 |
-
YOU ARE THE OMNISCIENT BRAIN. A skeptical, master-level crypto trading AI.
|
| 144 |
-
Your goal is to validate the findings of your sub-systems and make the FINAL GO/NO-GO decision for {symbol}.
|
| 145 |
-
Current Price: {current_price}
|
| 146 |
-
|
| 147 |
-
========== 🧠 PART 1: SUB-SYSTEM REPORTS (PRELIMINARY
|
| 148 |
-
Your subordinate
|
| 149 |
-
* Layer 1 Technical Score: {
|
| 150 |
-
- Titan ML Trend Model: {
|
| 151 |
-
- Chart Pattern Recognition: {
|
| 152 |
-
- Monte Carlo Probability (1H): {
|
| 153 |
-
* Layer 2 Enhanced Score: {
|
| 154 |
|
| 155 |
========== 🔍 PART 2: RAW EVIDENCE FOR VERIFICATION (THE TRUTH) ==========
|
| 156 |
-
Do
|
| 157 |
|
| 158 |
-
[A] RAW PRICE ACTION SNAPSHOT (
|
| 159 |
-
{
|
| 160 |
-
-> TASK: Does this price action confirm the 'Titan Trend' reported above?
|
| 161 |
|
| 162 |
-
[B] RAW WHALE ON-CHAIN ACTIVITY:
|
| 163 |
-
{
|
| 164 |
-
-> TASK: Is there hidden distribution (selling) despite the technical uptrend?
|
| 165 |
|
| 166 |
[C] RAW NEWSWIRE FEED (Latest Headlines & Summaries):
|
| 167 |
-
\"\"\"
|
| 168 |
-
|
|
|
|
|
|
|
| 169 |
|
| 170 |
========== 📖 PART 3: INSTITUTIONAL MEMORY (LEARNING PLAYBOOK) ==========
|
|
|
|
| 171 |
{learning_context}
|
| 172 |
|
| 173 |
========== 🛑 FINAL DECISION TASK ==========
|
| 174 |
-
Perform a deep, step-by-step internal analysis (triggered by your
|
| 175 |
Compare PART 1 (Opinions) vs PART 2 (Facts).
|
| 176 |
-
If FACTS contradict OPINIONS, you MUST reject the trade.
|
| 177 |
|
| 178 |
-
REQUIRED OUTPUT (Strict JSON format ONLY):
|
| 179 |
{{
|
| 180 |
"action": "WATCH" or "IGNORE",
|
| 181 |
-
"confidence_level": 0.00 to 1.00,
|
| 182 |
-
"reasoning": "A rigorous, professional justification citing specific raw evidence.",
|
| 183 |
"strategy_directive": "MOMENTUM_BREAKOUT" or "DIP_ACCUMULATION" or "SCALP_REVERSAL",
|
| 184 |
-
"key_risk_factor": "Identify the single biggest risk based on raw evidence."
|
| 185 |
}}
|
| 186 |
"""
|
| 187 |
|
| 188 |
def _create_heavyweight_reanalysis_prompt(self, trade: Dict, current: Dict, learning_context: str) -> str:
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
whale_now = current.get('whale_data', {})
|
| 196 |
-
whale_1h_net = whale_now.get('exchange_flows', {}).get('net_flow_usd', 0)
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
|
| 199 |
return f"""
|
| 200 |
ROLE: Omniscient Brain (Trade Guardian Mode).
|
| 201 |
-
EVENT: Mandatory periodic re-evaluation of OPEN POSITION.
|
| 202 |
ASSET: {symbol}
|
| 203 |
-
TIME IN TRADE: {
|
| 204 |
|
| 205 |
-
========== 📉 POSITION STATUS ==========
|
| 206 |
* Entry Price: {entry_price}
|
| 207 |
-
* Current Price: {current_price}
|
| 208 |
-
* Unrealized PnL: {
|
| 209 |
-
* Original Entry Reason: "{trade.get('entry_reason')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
-
|
| 212 |
-
1. ML Trend Update (Titan): Currently {titan_now:.4f}
|
| 213 |
-
2. Fresh Whale Activity (Last 1H): Net Flow ${whale_1h_net:,.0f}
|
| 214 |
-
3. Latest News Update:
|
| 215 |
-
\"\"\"{news_now[:1000]}\"\"\"
|
| 216 |
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
| 218 |
{learning_context}
|
| 219 |
|
| 220 |
-
========== 🛡️ GUARDIAN DECISION ==========
|
| 221 |
-
Analyze if the original investment thesis is still valid based on the NEW raw data.
|
| 222 |
-
|
|
|
|
|
|
|
| 223 |
{{
|
| 224 |
"action": "HOLD" or "EMERGENCY_EXIT" or "UPDATE_TARGETS",
|
| 225 |
-
"
|
| 226 |
-
"
|
| 227 |
-
"reasoning": "
|
| 228 |
}}
|
| 229 |
"""
|
| 230 |
print("✅ LLM Service V13.4 (Heavyweight Omniscient Brain) Loaded - NO SHORTCUTS")
|
|
|
|
| 1 |
+
# LLM.py (V13.6 - Final Production Version - FULL PROMPTS)
|
| 2 |
+
import os
|
| 3 |
+
import traceback
|
| 4 |
+
import json
|
| 5 |
+
import re
|
| 6 |
+
import time
|
| 7 |
from datetime import datetime
|
| 8 |
from typing import Dict, Any, Optional
|
| 9 |
from openai import AsyncOpenAI, RateLimitError, APIError
|
| 10 |
|
| 11 |
# ==============================================================================
|
| 12 |
+
# 🔌 إعدادات الاتصال بالنموذج (Model Connection Settings)
|
| 13 |
# ==============================================================================
|
| 14 |
LLM_API_URL = os.getenv("LLM_API_URL", "https://integrate.api.nvidia.com/v1")
|
| 15 |
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
| 16 |
LLM_MODEL = os.getenv("LLM_MODEL", "nvidia/llama-3.1-nemotron-ultra-253b-v1")
|
| 17 |
|
| 18 |
+
# بارامترات التوليد (مضبوطة لصرامة التحليل)
|
| 19 |
LLM_TEMPERATURE = 0.2
|
| 20 |
LLM_TOP_P = 0.7
|
| 21 |
+
LLM_MAX_TOKENS = 16384 # السماح بأقصى طول استجابة ممكن
|
| 22 |
LLM_FREQUENCY_PENALTY = 0.8
|
| 23 |
LLM_PRESENCE_PENALTY = 0.5
|
| 24 |
+
CLIENT_TIMEOUT = 300.0 # 5 دقائق مهلة للردود المعقدة
|
| 25 |
|
| 26 |
class LLMService:
|
| 27 |
def __init__(self):
|
| 28 |
if not LLM_API_KEY:
|
| 29 |
+
raise ValueError("❌ [LLM FATAL] LLM_API_KEY environment variable is missing!")
|
| 30 |
|
| 31 |
self.client = AsyncOpenAI(
|
| 32 |
base_url=LLM_API_URL,
|
| 33 |
api_key=LLM_API_KEY,
|
| 34 |
timeout=CLIENT_TIMEOUT
|
| 35 |
)
|
| 36 |
+
# سيتم حقن هذه التبعيات لاحقاً من app.py
|
| 37 |
self.r2_service = None
|
| 38 |
self.learning_hub = None
|
| 39 |
+
|
| 40 |
+
print(f"🧠 [LLM V13.6] Omniscient Brain Online. Model: {LLM_MODEL}")
|
| 41 |
|
| 42 |
async def _call_llm(self, prompt: str) -> Optional[str]:
|
| 43 |
+
"""
|
| 44 |
+
تنفيذ استدعاء API للنموذج مع تفعيل وضع التفكير العميق (Nemotron Specific).
|
| 45 |
+
"""
|
| 46 |
+
# ⚠️ عبارة تفعيل وضع التفكير الخاصة بنموذج Nemotron
|
| 47 |
+
system_prompt_trigger = "detailed thinking on"
|
| 48 |
+
|
| 49 |
try:
|
| 50 |
response = await self.client.chat.completions.create(
|
| 51 |
model=LLM_MODEL,
|
| 52 |
messages=[
|
| 53 |
+
{"role": "system", "content": system_prompt_trigger},
|
| 54 |
{"role": "user", "content": prompt}
|
| 55 |
],
|
| 56 |
temperature=LLM_TEMPERATURE,
|
|
|
|
| 59 |
frequency_penalty=LLM_FREQUENCY_PENALTY,
|
| 60 |
presence_penalty=LLM_PRESENCE_PENALTY,
|
| 61 |
stream=False,
|
| 62 |
+
response_format={"type": "json_object"} # إجبار النموذج على الرد بصيغة JSON
|
| 63 |
)
|
| 64 |
+
|
| 65 |
+
if response.choices and response.choices[0].message.content:
|
| 66 |
+
return response.choices[0].message.content
|
| 67 |
+
else:
|
| 68 |
+
print("⚠️ [LLM Warning] Received empty response from model.")
|
| 69 |
+
return None
|
| 70 |
+
|
| 71 |
except Exception as e:
|
| 72 |
+
print(f"❌ [LLM Call Error] API request failed: {e}")
|
| 73 |
return None
|
| 74 |
|
| 75 |
def _parse_json_secure(self, text: str) -> Optional[Dict]:
|
| 76 |
+
"""
|
| 77 |
+
محلل JSON قوي يحاول استخراج أول كائن JSON صالح من النص،
|
| 78 |
+
حتى لو كان الرد يحتوي على نصوص إضافية قبل أو بعد الـ JSON.
|
| 79 |
+
"""
|
| 80 |
try:
|
| 81 |
+
# البحث عن نمط {...} عبر الأسطر المتعددة
|
| 82 |
+
json_match = re.search(r'\{.*\}', text, re.DOTALL)
|
| 83 |
+
if json_match:
|
| 84 |
+
return json.loads(json_match.group(0))
|
| 85 |
+
else:
|
| 86 |
+
print("⚠️ [LLM Parser] No JSON object found in response text.")
|
| 87 |
+
return None
|
| 88 |
+
except json.JSONDecodeError as e:
|
| 89 |
+
print(f"⚠️ [LLM Parser] JSON decode failed: {e}")
|
| 90 |
+
return None
|
| 91 |
+
except Exception as e:
|
| 92 |
+
print(f"❌ [LLM Parser] Unexpected error: {e}")
|
| 93 |
+
return None
|
| 94 |
|
| 95 |
# ==================================================================
|
| 96 |
+
# 🧠 الوظيفة الرئيسية 1: قرار الدخول الاستراتيجي (Layer 3)
|
| 97 |
# ==================================================================
|
| 98 |
async def get_trading_decision(self, candidate_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 99 |
+
"""
|
| 100 |
+
تحليل بيانات المرشح الكاملة واتخاذ قرار نهائي بالمراقبة أو الرفض.
|
| 101 |
+
"""
|
| 102 |
+
symbol = candidate_data.get('symbol', 'UNKNOWN_ASSET')
|
| 103 |
try:
|
| 104 |
+
# 1. جلب سياق التعلم المؤسسي (Institutional Memory)
|
| 105 |
+
learning_context = "Playbook: No specific prior learning records found for this context."
|
| 106 |
if self.learning_hub:
|
| 107 |
learning_context = await self.learning_hub.get_active_context_for_llm("general", f"{symbol} entry analysis")
|
| 108 |
|
| 109 |
+
# 2. بناء البرومبت الشامل (Heavyweight Prompt)
|
| 110 |
prompt = self._create_heavyweight_entry_prompt(candidate_data, learning_context)
|
| 111 |
+
|
| 112 |
+
# 3. استشارة النموذج
|
| 113 |
response_text = await self._call_llm(prompt)
|
| 114 |
+
if not response_text: return None
|
| 115 |
+
|
| 116 |
+
# 4. تحليل الرد
|
| 117 |
decision = self._parse_json_secure(response_text)
|
| 118 |
|
| 119 |
+
# 5. أرشفة عملية اتخاذ القرار (للشفافية والتدقيق المستقبلي)
|
| 120 |
+
if self.r2_service and decision:
|
| 121 |
await self.r2_service.save_llm_prompt_async(symbol, "entry_decision_full", prompt, response_text)
|
| 122 |
|
| 123 |
return decision
|
| 124 |
+
|
| 125 |
except Exception as e:
|
| 126 |
+
print(f"❌ [LLM Entry Error] Critical failure for {symbol}: {e}")
|
| 127 |
traceback.print_exc()
|
| 128 |
return None
|
| 129 |
|
| 130 |
+
# ==================================================================
|
| 131 |
+
# 🔄 الوظيفة الرئيسية 2: إعادة التحليل الدوري (Strategic Re-eval)
|
| 132 |
+
# ==================================================================
|
| 133 |
async def re_analyze_trade_async(self, trade_data: Dict[str, Any], current_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 134 |
+
"""
|
| 135 |
+
مراجعة صفقة مفتوحة بناءً على تغيرات السوق وإصدار أوامر تحديث أو خروج.
|
| 136 |
+
"""
|
| 137 |
+
symbol = trade_data.get('symbol', 'UNKNOWN_ASSET')
|
| 138 |
try:
|
| 139 |
+
# 1. جلب سياق التعلم الخاص بالاستراتيجية
|
| 140 |
+
strategy_name = trade_data.get('entry_reason', 'GENERIC_STRATEGY')
|
| 141 |
+
learning_context = "Playbook: Stick to original trading plan unless validated invalidation criteria are met."
|
| 142 |
if self.learning_hub:
|
| 143 |
+
learning_context = await self.learning_hub.get_active_context_for_llm("strategy", f"{symbol} re-eval {strategy_name}")
|
| 144 |
|
| 145 |
+
# 2. بناء برومبت إعادة التحليل
|
| 146 |
prompt = self._create_heavyweight_reanalysis_prompt(trade_data, current_data, learning_context)
|
| 147 |
+
|
| 148 |
+
# 3. استشارة النموذج
|
| 149 |
response_text = await self._call_llm(prompt)
|
| 150 |
+
if not response_text: return None
|
| 151 |
+
|
| 152 |
+
# 4. تحليل الرد
|
| 153 |
decision = self._parse_json_secure(response_text)
|
| 154 |
|
| 155 |
+
# 5. الأرشفة
|
| 156 |
+
if self.r2_service and decision:
|
| 157 |
await self.r2_service.save_llm_prompt_async(symbol, "re_analysis_full", prompt, response_text)
|
| 158 |
|
| 159 |
return decision
|
| 160 |
+
|
| 161 |
except Exception as e:
|
| 162 |
+
print(f"❌ [LLM Re-Eval Error] Critical failure for {symbol}: {e}")
|
| 163 |
return None
|
| 164 |
|
| 165 |
# ==================================================================
|
| 166 |
+
# 📝 قسم هندسة البرومبتات الكاملة (Full Prompt Engineering)
|
| 167 |
# ==================================================================
|
| 168 |
def _create_heavyweight_entry_prompt(self, data: Dict[str, Any], learning_context: str) -> str:
|
| 169 |
+
"""
|
| 170 |
+
إنشاء برومبت ضخم يحتوي على كل التفاصيل المتاحة بدون أي اختصار.
|
| 171 |
+
"""
|
| 172 |
+
symbol = data.get('symbol', 'UNKNOWN')
|
| 173 |
+
current_price = data.get('current_price', 0.0)
|
| 174 |
+
|
| 175 |
+
# --- بيانات الطبقات السابقة (Preliminary Scores) ---
|
| 176 |
+
l1_total_score = data.get('enhanced_final_score', 0.0)
|
| 177 |
+
l2_total_score = data.get('layer2_score', 0.0)
|
| 178 |
|
| 179 |
+
titan_raw_score = data.get('titan_details', {}).get('score', 0.0)
|
| 180 |
+
titan_trend_label = "STRONG_UPTREND" if titan_raw_score > 0.7 else "UPTREND" if titan_raw_score > 0.5 else "NEUTRAL/WEAK"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
pat_data = data.get('pattern_details', {})
|
| 183 |
+
pattern_name = pat_data.get('pattern_detected', 'None detected')
|
| 184 |
+
pattern_confidence = pat_data.get('pattern_confidence', 0.0)
|
| 185 |
+
|
| 186 |
+
mc_prob = data.get('components', {}).get('mc_score', 0.0)
|
| 187 |
|
| 188 |
+
# --- الأدلة الخام (Raw Evidence Data) ---
|
| 189 |
+
# 1. بيانات الحيتان
|
| 190 |
whale = data.get('whale_data', {})
|
| 191 |
whale_1h = whale.get('exchange_flows', {})
|
| 192 |
whale_24h = whale.get('accumulation_analysis_24h', {})
|
| 193 |
+
|
| 194 |
+
whale_evidence_block = f"""
|
| 195 |
+
- [1H Window] Net Flow to Exchanges: ${whale_1h.get('net_flow_usd', 0):,.2f}
|
| 196 |
+
- [1H Window] Deposit Tx Count: {whale_1h.get('deposit_count', 0)} | Withdrawal Tx Count: {whale_1h.get('withdrawal_count', 0)}
|
| 197 |
+
- [24H Window] Net Accumulation Flow: ${whale_24h.get('net_flow_usd', 0):,.2f}
|
| 198 |
+
- [24H Window] Total Large Transactions: {whale_24h.get('whale_transfers_count', 0)}
|
| 199 |
+
- [24H Window] Relative Flow Impact: {whale_24h.get('relative_net_flow_percent', 0):.4f}% of daily volume
|
| 200 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
# 2. نص الأخبار الكامل
|
| 203 |
+
raw_news_text = data.get('news_text', 'No specific news articles found for this asset in the last 12 hours.')
|
| 204 |
+
|
| 205 |
+
# 3. لقطة حركة السعر (OHLCV Snapshot)
|
| 206 |
+
ohlcv_data = data.get('ohlcv_sample', {})
|
| 207 |
+
price_snapshot_block = ""
|
| 208 |
+
for tf, candle in ohlcv_data.items():
|
| 209 |
+
if candle and len(candle) >= 6:
|
| 210 |
+
# Format: [Timestamp, Open, High, Low, Close, Volume]
|
| 211 |
+
price_snapshot_block += f" - {tf.upper()} Frame: Open={candle[1]}, High={candle[2]}, Low={candle[3]}, Close={candle[4]}, Vol={candle[5]}\n"
|
| 212 |
+
|
| 213 |
+
# --- تجميع البرومبت النهائي ---
|
| 214 |
return f"""
|
| 215 |
+
YOU ARE THE OMNISCIENT BRAIN. A skeptical, master-level crypto trading AI with absolute veto power.
|
| 216 |
+
Your goal is to validate the preliminary findings of your sub-systems and make the FINAL GO/NO-GO decision for asset: {symbol}.
|
| 217 |
+
Current Market Price: {current_price}
|
| 218 |
+
|
| 219 |
+
========== 🧠 PART 1: SUB-SYSTEM REPORTS (PRELIMINARY OPINIONS) ==========
|
| 220 |
+
Your subordinate analytical layers have flagged this asset with the following scores:
|
| 221 |
+
* Layer 1 Technical Score: {l1_total_score:.4f} / 1.0
|
| 222 |
+
- Titan ML Trend Model: {titan_raw_score:.4f} ({titan_trend_label})
|
| 223 |
+
- Chart Pattern Recognition: {pattern_name} (Confidence: {pattern_confidence:.2f})
|
| 224 |
+
- Monte Carlo Win Probability (1H): {mc_prob:.4f}
|
| 225 |
+
* Layer 2 Enhanced Score: {l2_total_score:.4f} / 1.0 (Adjusted for initial whale/news sentiment)
|
| 226 |
|
| 227 |
========== 🔍 PART 2: RAW EVIDENCE FOR VERIFICATION (THE TRUTH) ==========
|
| 228 |
+
Do NOT trust the scores above blindly. Verify them against this raw data yourself:
|
| 229 |
|
| 230 |
+
[A] RAW PRICE ACTION SNAPSHOT (Latest Closed Candles OHLCV):
|
| 231 |
+
{price_snapshot_block}
|
| 232 |
+
-> VERIFICATION TASK: Does this raw price action actually confirm the 'Titan Trend' reported above? Look for contradictions.
|
| 233 |
|
| 234 |
+
[B] RAW WHALE ON-CHAIN ACTIVITY (Flows & Accumulation):
|
| 235 |
+
{whale_evidence_block}
|
| 236 |
+
-> VERIFICATION TASK: Is there hidden distribution (selling) occurring despite the technical uptrend? High inflows to exchanges are a red flag.
|
| 237 |
|
| 238 |
[C] RAW NEWSWIRE FEED (Latest Headlines & Summaries):
|
| 239 |
+
\"\"\"
|
| 240 |
+
{raw_news_text}
|
| 241 |
+
\"\"\"
|
| 242 |
+
-> VERIFICATION TASK: Read the text above. Are there any immediate red flags, FUD (Fear, Uncertainty, Doubt), or regulatory risks that the sentiment score might have missed?
|
| 243 |
|
| 244 |
========== 📖 PART 3: INSTITUTIONAL MEMORY (LEARNING PLAYBOOK) ==========
|
| 245 |
+
The following rules have been learned from previous trading outcomes:
|
| 246 |
{learning_context}
|
| 247 |
|
| 248 |
========== 🛑 FINAL DECISION TASK ==========
|
| 249 |
+
Perform a deep, step-by-step internal analysis (triggered by your 'detailed thinking' mode).
|
| 250 |
Compare PART 1 (Opinions) vs PART 2 (Facts).
|
| 251 |
+
If FACTS strongly contradict OPINIONS, you MUST reject the trade regardless of the high scores.
|
| 252 |
|
| 253 |
+
REQUIRED OUTPUT (Strict JSON format ONLY, no other text):
|
| 254 |
{{
|
| 255 |
"action": "WATCH" or "IGNORE",
|
| 256 |
+
"confidence_level": 0.00 to 1.00 (Two decimal places),
|
| 257 |
+
"reasoning": "A rigorous, professional justification citing specific raw evidence points that swayed your decision.",
|
| 258 |
"strategy_directive": "MOMENTUM_BREAKOUT" or "DIP_ACCUMULATION" or "SCALP_REVERSAL",
|
| 259 |
+
"key_risk_factor": "Identify the single biggest risk factor based on the raw evidence provided."
|
| 260 |
}}
|
| 261 |
"""
|
| 262 |
|
| 263 |
def _create_heavyweight_reanalysis_prompt(self, trade: Dict, current: Dict, learning_context: str) -> str:
|
| 264 |
+
"""
|
| 265 |
+
إنشاء برومبت مفصل لإعادة تقييم صفقة مفتوحة، مقارنة ظروف الدخول بالوضع الحالي.
|
| 266 |
+
"""
|
| 267 |
+
symbol = trade.get('symbol', 'UNKNOWN')
|
| 268 |
+
entry_price = trade.get('entry_price', 0.0)
|
| 269 |
+
current_price = current.get('current_price', 0.0)
|
| 270 |
+
|
| 271 |
+
# حساب مدة الصفقة بالدقائق
|
| 272 |
+
try:
|
| 273 |
+
entry_time = datetime.fromisoformat(trade.get('entry_time').replace('Z', '+00:00'))
|
| 274 |
+
duration_minutes = (datetime.now(entry_time.tzinfo) - entry_time).total_seconds() / 60
|
| 275 |
+
except:
|
| 276 |
+
duration_minutes = 0.0
|
| 277 |
+
|
| 278 |
+
pnl_percentage = ((current_price - entry_price) / entry_price) * 100
|
| 279 |
+
|
| 280 |
+
# البيانات الحالية المقارنة
|
| 281 |
+
titan_score_now = current.get('titan_score', 0.0)
|
| 282 |
+
|
| 283 |
whale_now = current.get('whale_data', {})
|
| 284 |
+
whale_1h_net = whale_now.get('exchange_flows', {}).get('net_flow_usd', 0.0)
|
| 285 |
+
whale_24h_net = whale_now.get('accumulation_analysis_24h', {}).get('net_flow_usd', 0.0)
|
| 286 |
+
|
| 287 |
+
news_text_now = current.get('news_text', 'No new significant news.')
|
| 288 |
|
| 289 |
return f"""
|
| 290 |
ROLE: Omniscient Brain (Trade Guardian Mode).
|
| 291 |
+
EVENT: Mandatory periodic strategic re-evaluation of an OPEN POSITION.
|
| 292 |
ASSET: {symbol}
|
| 293 |
+
TIME IN TRADE: {duration_minutes:.1f} minutes
|
| 294 |
|
| 295 |
+
========== 📉 CURRENT POSITION STATUS ==========
|
| 296 |
* Entry Price: {entry_price}
|
| 297 |
+
* Current Market Price: {current_price}
|
| 298 |
+
* Unrealized PnL: {pnl_percentage:+.2f}%
|
| 299 |
+
* Original Entry Reason: "{trade.get('entry_reason', 'N/A')}"
|
| 300 |
+
* Current Targets -> TP: {trade.get('tp_price', 'N/A')} | SL: {trade.get('sl_price', 'N/A')}
|
| 301 |
+
|
| 302 |
+
========== 🆕 CHANGED MARKET CONDITIONS (RAW DATA UPDATE) ==========
|
| 303 |
+
1. ML Trend Model Update (Titan): Currently at {titan_score_now:.4f}
|
| 304 |
+
(Is the trend weakening compared to entry?)
|
| 305 |
+
|
| 306 |
+
2. Fresh Whale Activity (Last 1H Window): Net Flow ${whale_1h_net:,.0f}
|
| 307 |
+
(Positive value = potential selling pressure flowing to exchanges. Negative = accumulation.)
|
| 308 |
|
| 309 |
+
3. 24H Cumulative Whale Flow: Net ${whale_24h_net:,.0f}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
+
4. Latest News Update Raw Text:
|
| 312 |
+
\"\"\"{news_text_now[:1500]}\"\"\"
|
| 313 |
+
|
| 314 |
+
========== 📖 PLAYBOOK & STRATEGY GUIDELINES ==========
|
| 315 |
{learning_context}
|
| 316 |
|
| 317 |
+
========== 🛡️ GUARDIAN DECISION TASK ==========
|
| 318 |
+
Analyze if the original investment thesis is still valid based on the NEW raw data above.
|
| 319 |
+
Do NOT recommend closing just because of small fluctuations. Look for FUNDAMENTAL thesisINVALIDATION.
|
| 320 |
+
|
| 321 |
+
REQUIRED OUTPUT (Strict JSON format ONLY):
|
| 322 |
{{
|
| 323 |
"action": "HOLD" or "EMERGENCY_EXIT" or "UPDATE_TARGETS",
|
| 324 |
+
"new_tp": null or a specific new float value (if action is UPDATE_TARGETS),
|
| 325 |
+
"new_sl": null or a specific new float value (if action is UPDATE_TARGETS),
|
| 326 |
+
"reasoning": "Concise professional assessment of current risk vs original thesis based on new data."
|
| 327 |
}}
|
| 328 |
"""
|
| 329 |
print("✅ LLM Service V13.4 (Heavyweight Omniscient Brain) Loaded - NO SHORTCUTS")
|