Create strategies.py
Browse files- ml_engine/strategies.py +334 -0
ml_engine/strategies.py
ADDED
|
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ml_engine/strategies.py
|
| 2 |
+
import asyncio
|
| 3 |
+
|
| 4 |
+
# الاستيراد من الوحدات الداخلية في نفس المجلد
|
| 5 |
+
from .patterns import ChartPatternAnalyzer
|
| 6 |
+
|
| 7 |
+
class PatternEnhancedStrategyEngine:
|
| 8 |
+
def __init__(self, data_manager, learning_engine):
|
| 9 |
+
self.data_manager = data_manager
|
| 10 |
+
self.learning_engine = learning_engine
|
| 11 |
+
self.pattern_analyzer = ChartPatternAnalyzer()
|
| 12 |
+
|
| 13 |
+
async def enhance_strategy_with_patterns(self, strategy_scores, pattern_analysis, symbol):
|
| 14 |
+
"""تعزيز الاستراتيجيات بناءً على الأنماط المكتشفة"""
|
| 15 |
+
if not pattern_analysis or pattern_analysis.get('pattern_detected') in ['no_clear_pattern', 'insufficient_data']:
|
| 16 |
+
return strategy_scores
|
| 17 |
+
|
| 18 |
+
pattern_confidence = pattern_analysis.get('pattern_confidence', 0)
|
| 19 |
+
pattern_name = pattern_analysis.get('pattern_detected', '')
|
| 20 |
+
predicted_direction = pattern_analysis.get('predicted_direction', '')
|
| 21 |
+
|
| 22 |
+
if pattern_confidence >= 0.6:
|
| 23 |
+
enhancement_factor = self._calculate_pattern_enhancement(pattern_confidence, pattern_name)
|
| 24 |
+
enhanced_strategies = self._get_pattern_appropriate_strategies(pattern_name, predicted_direction)
|
| 25 |
+
|
| 26 |
+
print(f"🎯 تعزيز استراتيجيات {symbol} بناءً على نمط {pattern_name} (ثقة: {pattern_confidence:.2f})")
|
| 27 |
+
|
| 28 |
+
for strategy in enhanced_strategies:
|
| 29 |
+
if strategy in strategy_scores:
|
| 30 |
+
original_score = strategy_scores[strategy]
|
| 31 |
+
strategy_scores[strategy] = min(original_score * enhancement_factor, 1.0)
|
| 32 |
+
print(f" 📈 {strategy}: {original_score:.3f} → {strategy_scores[strategy]:.3f}")
|
| 33 |
+
|
| 34 |
+
return strategy_scores
|
| 35 |
+
|
| 36 |
+
def _calculate_pattern_enhancement(self, pattern_confidence, pattern_name):
|
| 37 |
+
"""حساب عامل التعزيز بناءً على ثقة النمط ونوعه"""
|
| 38 |
+
base_enhancement = 1.0 + (pattern_confidence * 0.3)
|
| 39 |
+
high_reliability_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Cup and Handle']
|
| 40 |
+
if pattern_name in high_reliability_patterns:
|
| 41 |
+
base_enhancement *= 1.1
|
| 42 |
+
return min(base_enhancement, 1.5)
|
| 43 |
+
|
| 44 |
+
def _get_pattern_appropriate_strategies(self, pattern_name, direction):
|
| 45 |
+
"""تحديد الاستراتيجيات المناسبة للنمط المكتشف"""
|
| 46 |
+
reversal_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Triple Top', 'Triple Bottom']
|
| 47 |
+
continuation_patterns = ['Flags', 'Pennants', 'Triangles', 'Rectangles']
|
| 48 |
+
|
| 49 |
+
if pattern_name in reversal_patterns:
|
| 50 |
+
if direction == 'down':
|
| 51 |
+
return ['breakout_momentum', 'trend_following']
|
| 52 |
+
else:
|
| 53 |
+
return ['mean_reversion', 'breakout_momentum']
|
| 54 |
+
elif pattern_name in continuation_patterns:
|
| 55 |
+
return ['trend_following', 'breakout_momentum']
|
| 56 |
+
else:
|
| 57 |
+
return ['breakout_momentum', 'hybrid_ai']
|
| 58 |
+
|
| 59 |
+
class MultiStrategyEngine:
|
| 60 |
+
def __init__(self, data_manager, learning_engine):
|
| 61 |
+
self.data_manager = data_manager
|
| 62 |
+
self.learning_engine = learning_engine
|
| 63 |
+
|
| 64 |
+
# 🔴 ملاحظة: تم إزالة مُهيِئات (constructors) التحليل غير المستخدمة من هنا
|
| 65 |
+
# الاستراتيجيات تستهلك البيانات المحسوبة مسبقاً من (symbol_data)
|
| 66 |
+
# التي يوفرها (MLProcessor) الرئيسي
|
| 67 |
+
|
| 68 |
+
self.pattern_enhancer = PatternEnhancedStrategyEngine(data_manager, learning_engine)
|
| 69 |
+
|
| 70 |
+
self.strategies = {
|
| 71 |
+
'trend_following': self._trend_following_strategy,
|
| 72 |
+
'mean_reversion': self._mean_reversion_strategy,
|
| 73 |
+
'breakout_momentum': self._breakout_momentum_strategy,
|
| 74 |
+
'volume_spike': self._volume_spike_strategy,
|
| 75 |
+
'whale_tracking': self._whale_tracking_strategy,
|
| 76 |
+
'pattern_recognition': self._pattern_recognition_strategy,
|
| 77 |
+
'hybrid_ai': self._hybrid_ai_strategy
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
async def evaluate_all_strategies(self, symbol_data, market_context):
|
| 81 |
+
"""تقييم جميع استراتيجيات التداول"""
|
| 82 |
+
try:
|
| 83 |
+
if self.learning_engine and hasattr(self.learning_engine, 'initialized') and self.learning_engine.initialized:
|
| 84 |
+
try:
|
| 85 |
+
market_condition = market_context.get('market_trend', 'sideways_market')
|
| 86 |
+
optimized_weights = await self.learning_engine.get_optimized_strategy_weights(market_condition)
|
| 87 |
+
except Exception as e:
|
| 88 |
+
# ❌ لا نستخدم قيم افتراضية، نستخدم الأوزان الأساسية
|
| 89 |
+
optimized_weights = await self.get_default_weights()
|
| 90 |
+
else:
|
| 91 |
+
optimized_weights = await self.get_default_weights()
|
| 92 |
+
|
| 93 |
+
strategy_scores = {}
|
| 94 |
+
base_scores = {}
|
| 95 |
+
|
| 96 |
+
for strategy_name, strategy_function in self.strategies.items():
|
| 97 |
+
try:
|
| 98 |
+
base_score = await strategy_function(symbol_data, market_context)
|
| 99 |
+
if base_score is None: # ❌ إذا فشلت الاستراتيجية، لا نستخدم قيم افتراضية
|
| 100 |
+
continue
|
| 101 |
+
base_scores[strategy_name] = base_score
|
| 102 |
+
weight = optimized_weights.get(strategy_name, 0.1)
|
| 103 |
+
weighted_score = base_score * weight
|
| 104 |
+
strategy_scores[strategy_name] = min(weighted_score, 1.0)
|
| 105 |
+
except Exception as error:
|
| 106 |
+
print(f"❌ خطأ في تقييم استراتيجية {strategy_name}: {error}")
|
| 107 |
+
# ❌ لا نستخدم أي محاكاة أو قيم افتراضية
|
| 108 |
+
continue
|
| 109 |
+
|
| 110 |
+
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 111 |
+
if pattern_analysis:
|
| 112 |
+
strategy_scores = await self.pattern_enhancer.enhance_strategy_with_patterns(
|
| 113 |
+
strategy_scores, pattern_analysis, symbol_data.get('symbol')
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
if base_scores:
|
| 117 |
+
best_strategy = max(base_scores.items(), key=lambda x: x[1])
|
| 118 |
+
best_strategy_name = best_strategy[0]
|
| 119 |
+
best_strategy_score = best_strategy[1]
|
| 120 |
+
symbol_data['recommended_strategy'] = best_strategy_name
|
| 121 |
+
symbol_data['strategy_confidence'] = best_strategy_score
|
| 122 |
+
|
| 123 |
+
return strategy_scores, base_scores
|
| 124 |
+
|
| 125 |
+
except Exception as error:
|
| 126 |
+
print(f"❌ خطأ في تقييم الاستراتيجيات: {error}")
|
| 127 |
+
# ❌ لا نستخدم أي محاكاة
|
| 128 |
+
return {}, {}
|
| 129 |
+
|
| 130 |
+
async def get_default_weights(self):
|
| 131 |
+
"""الأوزان الافتراضية للاستراتيجيات - هذه ليست محاكاة ولكن أوزان ابتدائية"""
|
| 132 |
+
return {
|
| 133 |
+
'trend_following': 0.15,
|
| 134 |
+
'mean_reversion': 0.12,
|
| 135 |
+
'breakout_momentum': 0.18,
|
| 136 |
+
'volume_spike': 0.10,
|
| 137 |
+
'whale_tracking': 0.20,
|
| 138 |
+
'pattern_recognition': 0.15,
|
| 139 |
+
'hybrid_ai': 0.10
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
async def _trend_following_strategy(self, symbol_data, market_context):
|
| 143 |
+
"""استراتيجية تتبع الاتجاه"""
|
| 144 |
+
try:
|
| 145 |
+
score = 0.0
|
| 146 |
+
indicators = symbol_data.get('advanced_indicators', {})
|
| 147 |
+
|
| 148 |
+
for timeframe in ['4h', '1h', '15m']:
|
| 149 |
+
if timeframe in indicators:
|
| 150 |
+
timeframe_indicators = indicators[timeframe]
|
| 151 |
+
|
| 152 |
+
if self._check_ema_alignment(timeframe_indicators):
|
| 153 |
+
score += 0.20
|
| 154 |
+
|
| 155 |
+
adx_value = timeframe_indicators.get('adx', 0)
|
| 156 |
+
if adx_value > 25:
|
| 157 |
+
score += 0.15
|
| 158 |
+
|
| 159 |
+
if (timeframe_indicators.get('ichimoku_conversion', 0) >
|
| 160 |
+
timeframe_indicators.get('ichimoku_base', 0)):
|
| 161 |
+
score += 0.10
|
| 162 |
+
|
| 163 |
+
return min(score, 1.0)
|
| 164 |
+
except Exception as error:
|
| 165 |
+
print(f"❌ خطأ في استراتيجية تتبع الاتجاه: {error}")
|
| 166 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 167 |
+
|
| 168 |
+
def _check_ema_alignment(self, indicators):
|
| 169 |
+
"""التحقق من محاذاة المتوسطات المتحركة"""
|
| 170 |
+
required_emas = ['ema_9', 'ema_21', 'ema_50']
|
| 171 |
+
if all(ema in indicators for ema in required_emas):
|
| 172 |
+
return (indicators['ema_9'] > indicators['ema_21'] > indicators['ema_50'])
|
| 173 |
+
return False
|
| 174 |
+
|
| 175 |
+
async def _mean_reversion_strategy(self, symbol_data, market_context):
|
| 176 |
+
"""استراتيجية العودة للمتوسط"""
|
| 177 |
+
try:
|
| 178 |
+
score = 0.0
|
| 179 |
+
current_price = symbol_data['current_price']
|
| 180 |
+
indicators = symbol_data.get('advanced_indicators', {})
|
| 181 |
+
|
| 182 |
+
if '1h' in indicators:
|
| 183 |
+
hourly_indicators = indicators['1h']
|
| 184 |
+
|
| 185 |
+
if all(key in hourly_indicators for key in ['bb_upper', 'bb_lower', 'bb_middle']):
|
| 186 |
+
position_in_band = (current_price - hourly_indicators['bb_lower']) / (
|
| 187 |
+
hourly_indicators['bb_upper'] - hourly_indicators['bb_lower'])
|
| 188 |
+
|
| 189 |
+
if position_in_band < 0.1 and hourly_indicators.get('rsi', 50) < 35:
|
| 190 |
+
score += 0.45
|
| 191 |
+
if position_in_band > 0.9 and hourly_indicators.get('rsi', 50) > 65:
|
| 192 |
+
score += 0.45
|
| 193 |
+
|
| 194 |
+
rsi_value = hourly_indicators.get('rsi', 50)
|
| 195 |
+
if rsi_value < 30:
|
| 196 |
+
score += 0.35
|
| 197 |
+
elif rsi_value > 70:
|
| 198 |
+
score += 0.35
|
| 199 |
+
|
| 200 |
+
return min(score, 1.0)
|
| 201 |
+
except Exception as error:
|
| 202 |
+
print(f"❌ خطأ في استراتيجية العودة للمتوسط: {error}")
|
| 203 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 204 |
+
|
| 205 |
+
async def _breakout_momentum_strategy(self, symbol_data, market_context):
|
| 206 |
+
"""استراتيجية زخم الاختراق"""
|
| 207 |
+
try:
|
| 208 |
+
score = 0.0
|
| 209 |
+
indicators = symbol_data.get('advanced_indicators', {})
|
| 210 |
+
|
| 211 |
+
for timeframe in ['1h', '15m', '5m']:
|
| 212 |
+
if timeframe in indicators:
|
| 213 |
+
timeframe_indicators = indicators[timeframe]
|
| 214 |
+
|
| 215 |
+
volume_ratio = timeframe_indicators.get('volume_ratio', 0)
|
| 216 |
+
if volume_ratio > 1.8:
|
| 217 |
+
score += 0.25
|
| 218 |
+
elif volume_ratio > 1.3:
|
| 219 |
+
score += 0.15
|
| 220 |
+
|
| 221 |
+
if timeframe_indicators.get('macd_hist', 0) > 0:
|
| 222 |
+
score += 0.20
|
| 223 |
+
|
| 224 |
+
if 'vwap' in timeframe_indicators and symbol_data['current_price'] > timeframe_indicators['vwap']:
|
| 225 |
+
score += 0.15
|
| 226 |
+
|
| 227 |
+
rsi_value = timeframe_indicators.get('rsi', 50)
|
| 228 |
+
if 40 <= rsi_value <= 70:
|
| 229 |
+
score += 0.10
|
| 230 |
+
|
| 231 |
+
if score > 0.2:
|
| 232 |
+
score = max(score, 0.4)
|
| 233 |
+
|
| 234 |
+
return min(score, 1.0)
|
| 235 |
+
except Exception as error:
|
| 236 |
+
print(f"❌ خطأ في استراتيجية زخم الاختراق: {error}")
|
| 237 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 238 |
+
|
| 239 |
+
async def _volume_spike_strategy(self, symbol_data, market_context):
|
| 240 |
+
"""استراتيجية ارتفاع الحجم"""
|
| 241 |
+
try:
|
| 242 |
+
score = 0.0
|
| 243 |
+
indicators = symbol_data.get('advanced_indicators', {})
|
| 244 |
+
|
| 245 |
+
for timeframe in ['1h', '15m', '5m']:
|
| 246 |
+
if timeframe in indicators:
|
| 247 |
+
volume_ratio = indicators[timeframe].get('volume_ratio', 0)
|
| 248 |
+
if volume_ratio > 3.0:
|
| 249 |
+
score += 0.45
|
| 250 |
+
elif volume_ratio > 2.0:
|
| 251 |
+
score += 0.25
|
| 252 |
+
elif volume_ratio > 1.5:
|
| 253 |
+
score += 0.15
|
| 254 |
+
|
| 255 |
+
return min(score, 1.0)
|
| 256 |
+
except Exception as error:
|
| 257 |
+
print(f"❌ خطأ في استراتيجية ارتفاع الحجم: {error}")
|
| 258 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 259 |
+
|
| 260 |
+
async def _whale_tracking_strategy(self, symbol_data, market_context):
|
| 261 |
+
"""استراتيجية تتبع الحيتان"""
|
| 262 |
+
try:
|
| 263 |
+
whale_data = symbol_data.get('whale_data', {})
|
| 264 |
+
if not whale_data.get('data_available', False):
|
| 265 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 266 |
+
|
| 267 |
+
whale_signal = await self.data_manager.get_whale_trading_signal(
|
| 268 |
+
symbol_data['symbol'], whale_data, market_context
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
if whale_signal and whale_signal.get('action') != 'HOLD':
|
| 272 |
+
confidence = whale_signal.get('confidence', 0)
|
| 273 |
+
if whale_signal.get('action') in ['STRONG_BUY', 'BUY']:
|
| 274 |
+
return min(confidence * 1.2, 1.0)
|
| 275 |
+
elif whale_signal.get('action') in ['STRONG_SELL', 'SELL']:
|
| 276 |
+
return min(confidence * 0.8, 1.0)
|
| 277 |
+
|
| 278 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 279 |
+
except Exception as error:
|
| 280 |
+
print(f"❌ خطأ في استراتيجية تتبع الحيتان: {error}")
|
| 281 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 282 |
+
|
| 283 |
+
async def _pattern_recognition_strategy(self, symbol_data, market_context):
|
| 284 |
+
"""استراتيجية التعرف على الأنماط"""
|
| 285 |
+
try:
|
| 286 |
+
score = 0.0
|
| 287 |
+
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 288 |
+
|
| 289 |
+
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
|
| 290 |
+
score += pattern_analysis.get('pattern_confidence', 0) * 0.8
|
| 291 |
+
else:
|
| 292 |
+
indicators = symbol_data.get('advanced_indicators', {})
|
| 293 |
+
for timeframe in ['4h', '1h']:
|
| 294 |
+
if timeframe in indicators:
|
| 295 |
+
timeframe_indicators = indicators[timeframe]
|
| 296 |
+
if (timeframe_indicators.get('rsi', 50) > 60 and
|
| 297 |
+
timeframe_indicators.get('macd_hist', 0) > 0 and
|
| 298 |
+
timeframe_indicators.get('volume_ratio', 0) > 1.5):
|
| 299 |
+
score += 0.35
|
| 300 |
+
|
| 301 |
+
return min(score, 1.0)
|
| 302 |
+
except Exception as error:
|
| 303 |
+
print(f"❌ خطأ في استراتيجية التعرف على الأنماط: {error}")
|
| 304 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 305 |
+
|
| 306 |
+
async def _hybrid_ai_strategy(self, symbol_data, market_context):
|
| 307 |
+
"""استراتيجية الهجين الذكية"""
|
| 308 |
+
try:
|
| 309 |
+
score = 0.0
|
| 310 |
+
|
| 311 |
+
monte_carlo_probability = symbol_data.get('monte_carlo_probability')
|
| 312 |
+
if monte_carlo_probability is not None:
|
| 313 |
+
score += monte_carlo_probability * 0.4
|
| 314 |
+
|
| 315 |
+
final_score = symbol_data.get('final_score', 0)
|
| 316 |
+
if final_score > 0:
|
| 317 |
+
score += final_score * 0.3
|
| 318 |
+
|
| 319 |
+
if market_context.get('btc_sentiment') == 'BULLISH':
|
| 320 |
+
score += 0.15
|
| 321 |
+
elif market_context.get('btc_sentiment') == 'BEARISH':
|
| 322 |
+
score -= 0.08
|
| 323 |
+
|
| 324 |
+
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 325 |
+
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
|
| 326 |
+
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.15
|
| 327 |
+
score += pattern_bonus
|
| 328 |
+
|
| 329 |
+
return max(0.0, min(score, 1.0))
|
| 330 |
+
except Exception as error:
|
| 331 |
+
print(f"❌ خطأ في استراتيجية الهجين الذكية: {error}")
|
| 332 |
+
return None # ❌ لا نرجع قيمة افتراضية
|
| 333 |
+
|
| 334 |
+
print("✅ ML Module: Strategy Engine loaded")
|