Trad / learning_hub /reflector.py
Riy777's picture
Update learning_hub/reflector.py
9c39c02 verified
# learning_hub/reflector.py
# (V12.3 Full - Hybrid Aware)
import json
import traceback
from typing import Dict, Any, TYPE_CHECKING
from .schemas import TraceLog, ReflectorOutput
from .memory_store import MemoryStore
if TYPE_CHECKING:
from LLM import LLMService
class Reflector:
def __init__(self, llm_service: 'LLMService', memory_store: MemoryStore):
self.llm_service = llm_service
self.memory_store = memory_store
print("✅ Learning Hub: Reflector (Hybrid Aware) loaded")
async def analyze_trade_outcome(self, trade_object: Dict[str, Any], close_reason: str):
try:
decision_data = trade_object.get('decision_data', {})
trace_log = TraceLog(
decision_context=decision_data,
market_context_at_decision=decision_data.get('market_context_at_decision', {}),
indicators_at_decision=decision_data.get('indicators_at_decision', {}),
# تمرير الأوزان التي استخدمت فعلياً
hybrid_weights_used=decision_data.get('hybrid_weights_at_entry', {}),
closed_trade_object=trade_object,
actual_outcome_reason=close_reason
)
prompt = self._create_reflector_prompt(trace_log, decision_data)
response_text = await self.llm_service._call_llm(prompt)
if not response_text: raise ValueError("LLM returned no response.")
reflector_json = self.llm_service._parse_llm_response_enhanced(
response_text, fallback_strategy="reflection", symbol=trade_object.get('symbol', 'N/A')
)
if not reflector_json: raise ValueError("Failed to parse LLM response")
reflector_output = ReflectorOutput(**reflector_json)
domain = self._determine_domain(trade_object.get('strategy', 'general'), reflector_output.error_mode)
await self.memory_store.save_new_delta(reflector_output, trade_object, domain)
print(f"✅ [Reflector] Analyzed {trade_object.get('symbol')}. New Delta created.")
except Exception as e:
print(f"❌ [Reflector] Analysis failed: {e}")
traceback.print_exc()
def _determine_domain(self, strategy: str, error_mode: str) -> str:
em = error_mode.lower()
if "pattern" in em: return "pattern"
if "indicator" in em or "rsi" in em: return "indicator"
if "monte_carlo" in em: return "monte_carlo"
if "titan" in em or "model" in em: return "strategy" # تصنيف أخطاء تيتان ضمن الاستراتيجية
if "news" in em: return "general"
return "strategy"
def _create_reflector_prompt(self, trace_log: TraceLog, decision_data: Dict) -> str:
trade = trace_log.closed_trade_object
pnl = trade.get('pnl_percent', 0)
is_success = pnl > 0.1
# 🔴 إدراج تفاصيل المكونات الهجينة في الموجه
comps = decision_data.get('components', {})
hybrid_context = f"""
* Hybrid Score Breakdown (Total: {trade.get('score', 'N/A'):.4f}):
- Titan Model Score: {comps.get('titan_score', 'N/A'):.2f}
- Chart Patterns Score: {comps.get('patterns_score', 'N/A'):.2f}
- Monte Carlo Score: {comps.get('mc_score', 'N/A'):.2f}
* Weights Used at Entry: {json.dumps(trace_log.hybrid_weights_used)}
"""
news_context = f"""
* News VADER Score: {decision_data.get('news_score', 0.0):.4f}
* News Text: {decision_data.get('news_text', 'N/A')}
"""
return f"""
SYSTEM: You are an expert trading analyst Reflector. Analyze this "Trace" of a hybrid AI trading decision.
Did the primary model (Titan) mislead us, or did the secondary models (Patterns/MC) cause a false positive?
--- TRACE LOG START ---
1. DECISION CONTEXT:
* Strategy: {trade.get('strategy', 'N/A')}
{hybrid_context}
* Entry Reasoning: {decision_data.get('reasoning', 'N/A')[:300]}...
2. NEWS CONTEXT:
{news_context}
3. OUTCOME:
* Final PnL: {pnl:+.2f}%
* Close Reason: {trace_log.actual_outcome_reason}
--- TRACE LOG END ---
TASK: Identify the root cause of success/failure. Focus on which hybrid component was most accurate/inaccurate.
SUGGEST RULE (Delta): Max 25 words. E.g., "If Titan > 0.95 but Patterns < 0.60, reduce position size."
OUTPUT JSON:
{{
"success": {str(is_success).lower()},
"score": 0.0,
"error_mode": "Short description (e.g., 'titan_false_positive_ignored_patterns')",
"suggested_rule": "Concise 25-word rule.",
"confidence": 0.0
}}
"""
return prompt