|
|
|
|
|
|
|
|
|
|
|
import asyncio |
|
|
import traceback |
|
|
from typing import Any, Dict, List |
|
|
from datetime import datetime, timezone |
|
|
from collections import defaultdict |
|
|
|
|
|
|
|
|
from .schemas import * |
|
|
from .policy_engine import PolicyEngine |
|
|
from .memory_store import MemoryStore |
|
|
from .statistical_analyzer import StatisticalAnalyzer |
|
|
from .reflector import Reflector |
|
|
from .curator import Curator |
|
|
|
|
|
|
|
|
try: |
|
|
import numpy as np |
|
|
from scipy.stats import pearsonr |
|
|
NUMPY_AVAILABLE = True |
|
|
except ImportError: |
|
|
print("❌ [HubManager] مكتبة numpy أو scipy غير مثبتة! لن يعمل تعلم الحيتان.") |
|
|
NUMPY_AVAILABLE = False |
|
|
|
|
|
class LearningHubManager: |
|
|
def __init__(self, r2_service: Any, llm_service: Any, data_manager: Any): |
|
|
print("🚀 Initializing Learning Hub Manager (V4 - Adaptive)...") |
|
|
|
|
|
|
|
|
self.r2_service = r2_service |
|
|
self.llm_service = llm_service |
|
|
self.data_manager = data_manager |
|
|
|
|
|
|
|
|
self.policy_engine = PolicyEngine() |
|
|
self.memory_store = MemoryStore( |
|
|
r2_service=self.r2_service, |
|
|
policy_engine=self.policy_engine, |
|
|
llm_service=self.llm_service |
|
|
) |
|
|
self.reflector = Reflector( |
|
|
llm_service=self.llm_service, |
|
|
memory_store=self.memory_store |
|
|
) |
|
|
self.curator = Curator( |
|
|
llm_service=self.llm_service, |
|
|
memory_store=self.memory_store |
|
|
) |
|
|
self.statistical_analyzer = StatisticalAnalyzer( |
|
|
r2_service=self.r2_service, |
|
|
data_manager=self.data_manager |
|
|
) |
|
|
|
|
|
|
|
|
self.whale_learning_lock = asyncio.Lock() |
|
|
self.optimal_whale_config = {} |
|
|
|
|
|
self.initialized = False |
|
|
print("✅ Learning Hub Manager constructed. Ready for initialization.") |
|
|
|
|
|
async def initialize(self): |
|
|
"""تهيئة جميع الأنظمة الفرعية""" |
|
|
if self.initialized: return |
|
|
print("🔄 [HubManager] Initializing all sub-modules...") |
|
|
|
|
|
|
|
|
await self.statistical_analyzer.initialize() |
|
|
|
|
|
|
|
|
if hasattr(self.r2_service, 'load_whale_learning_config_async'): |
|
|
self.optimal_whale_config = await self.r2_service.load_whale_learning_config_async() |
|
|
if self.optimal_whale_config: |
|
|
print(f"✅ [HubManager] Loaded optimal whale config: {self.optimal_whale_config.get('best_metric', 'N/A')}") |
|
|
|
|
|
self.initialized = True |
|
|
print("✅ [HubManager] All sub-modules initialized. Learning Hub is LIVE.") |
|
|
|
|
|
async def analyze_trade_and_learn(self, trade_object: Dict[str, Any], close_reason: str): |
|
|
"""الدالة الرئيسية للتعلم من الصفقات المغلقة""" |
|
|
if not self.initialized: return |
|
|
|
|
|
print(f"🧠 [HubManager] Learning from trade {trade_object.get('symbol')}...") |
|
|
|
|
|
|
|
|
try: |
|
|
await self.reflector.analyze_trade_outcome(trade_object, close_reason) |
|
|
except Exception as e: |
|
|
print(f"❌ [HubManager] Reflector failed: {e}") |
|
|
|
|
|
|
|
|
try: |
|
|
await self.statistical_analyzer.update_statistics(trade_object, close_reason) |
|
|
except Exception as e: |
|
|
print(f"❌ [HubManager] StatisticalAnalyzer failed: {e}") |
|
|
|
|
|
print(f"✅ [HubManager] Learning complete for {trade_object.get('symbol')}.") |
|
|
|
|
|
async def get_optimized_weights(self, market_condition: str = None) -> Dict[str, Any]: |
|
|
""" |
|
|
جلب الأوزان المحسنة (بما في ذلك الأوزان الهجينة المتكيفة). |
|
|
يستخدمها MLProcessor لتحديث معادلته الهجينة. |
|
|
""" |
|
|
if not self.initialized: |
|
|
return await self.statistical_analyzer.get_default_strategy_weights() |
|
|
|
|
|
|
|
|
return self.statistical_analyzer.weights |
|
|
|
|
|
|
|
|
async def get_active_context_for_llm(self, domain: str, query: str) -> str: |
|
|
if not self.initialized: return "Learning Hub not initialized." |
|
|
return await self.memory_store.get_active_context(domain, query) |
|
|
|
|
|
async def get_statistical_feedback_for_llm(self, entry_strategy: str) -> str: |
|
|
if not self.initialized: return "Learning Hub not initialized." |
|
|
best_profile = await self.statistical_analyzer.get_best_exit_profile(entry_strategy) |
|
|
if best_profile != "unknown": |
|
|
return f"Statistical Feedback: For '{entry_strategy}', '{best_profile}' exit profile performed best." |
|
|
return "No statistical feedback available yet." |
|
|
|
|
|
async def get_statistical_news_score(self, raw_vader_score: float) -> float: |
|
|
if not self.initialized: return 0.0 |
|
|
return await self.statistical_analyzer.get_statistical_vader_pnl(raw_vader_score) |
|
|
|
|
|
async def run_distillation_check(self): |
|
|
"""تشغيل دوري للتقطير (Curator)""" |
|
|
if not self.initialized: return |
|
|
|
|
|
for domain in self.memory_store.domain_files.keys(): |
|
|
await self.curator.check_and_distill_domain(domain) |
|
|
|
|
|
async def shutdown(self): |
|
|
"""حفظ كل البيانات عند الإغلاق""" |
|
|
if not self.initialized: return |
|
|
print("🔄 [HubManager] Shutting down... Saving learning data.") |
|
|
try: |
|
|
|
|
|
await self.statistical_analyzer.save_weights_to_r2() |
|
|
await self.statistical_analyzer.save_performance_history() |
|
|
await self.statistical_analyzer.save_exit_profile_effectiveness() |
|
|
await self.statistical_analyzer.save_vader_effectiveness() |
|
|
print("✅ [HubManager] Data saved successfully.") |
|
|
except Exception as e: |
|
|
print(f"❌ [HubManager] Save failed: {e}") |
|
|
|
|
|
|
|
|
async def run_whale_learning_check(self): |
|
|
if not self.initialized: await asyncio.sleep(60) |
|
|
print(f"🧠 [Whale-Logger] Starting background learning loop...") |
|
|
await asyncio.sleep(600) |
|
|
while True: |
|
|
try: |
|
|
pending = await self.r2_service.get_pending_whale_learning_records_async() |
|
|
if not pending: |
|
|
await asyncio.sleep(600) |
|
|
continue |
|
|
|
|
|
now_utc = datetime.now(timezone.utc) |
|
|
for record in pending: |
|
|
try: |
|
|
target_time = datetime.fromisoformat(record['target_time_utc']) |
|
|
if now_utc >= target_time: |
|
|
symbol = record['symbol'] |
|
|
target_price = await self.data_manager.get_latest_price_async(symbol) |
|
|
if target_price and target_price > 0 and record['start_price_usd'] > 0: |
|
|
pct_change = ((target_price - record['start_price_usd']) / record['start_price_usd']) * 100 |
|
|
record.update({'target_price_usd': target_price, 'price_change_percentage': pct_change, 'status': "COMPLETED"}) |
|
|
await self.r2_service.update_completed_whale_learning_record_async(record) |
|
|
except Exception: pass |
|
|
|
|
|
await self.update_optimal_whale_window() |
|
|
await asyncio.sleep(300) |
|
|
except Exception as e: |
|
|
print(f"❌ [Whale-Logger] Error: {e}") |
|
|
await asyncio.sleep(600) |
|
|
|
|
|
async def update_optimal_whale_window(self): |
|
|
if not NUMPY_AVAILABLE: return |
|
|
async with self.whale_learning_lock: |
|
|
try: |
|
|
all_completed = await self.r2_service.get_all_completed_whale_records_async() |
|
|
if len(all_completed) < 20: return |
|
|
|
|
|
price_changes = [] |
|
|
metrics_data = defaultdict(lambda: defaultdict(list)) |
|
|
windows = ['30m', '1h', '2h', '4h', '24h'] |
|
|
metric_keys = ['relative_net_flow_percent', 'transaction_density', 'net_flow_usd'] |
|
|
|
|
|
for r in all_completed: |
|
|
if r.get('price_change_percentage') is None: continue |
|
|
price_changes.append(r['price_change_percentage']) |
|
|
analysis = r.get('window_analysis', {}) |
|
|
for w in windows: |
|
|
for k in metric_keys: |
|
|
metrics_data[w][k].append(analysis.get(w, {}).get(k, 0.0)) |
|
|
|
|
|
price_np = np.array(price_changes) |
|
|
best_corr = 0 |
|
|
best_key = None |
|
|
|
|
|
for w in windows: |
|
|
for k in metric_keys: |
|
|
metric_np = np.array(metrics_data[w][k]) |
|
|
if len(metric_np) == len(price_np): |
|
|
corr, p_val = pearsonr(metric_np, price_np) |
|
|
if not np.isnan(corr) and p_val < 0.1 and abs(corr) > best_corr: |
|
|
best_corr = abs(corr) |
|
|
best_key = f"{w}_{k}" |
|
|
|
|
|
if best_key: |
|
|
w, m = best_key.split('_', 1) |
|
|
new_config = {"best_window": w, "best_metric": m, "correlation_score": best_corr, "total_samples": len(price_np), "last_updated_utc": datetime.now(timezone.utc).isoformat()} |
|
|
self.optimal_whale_config = new_config |
|
|
await self.r2_service.save_whale_learning_config_async(new_config) |
|
|
print(f"🏆 [Whale-Teacher] New best signal: {m} on {w} (Corr: {best_corr:.2f})") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"❌ [Whale-Teacher] Error: {e}") |