Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The RhymesAI and The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils.accelerate_utils import apply_forward_hook | |
from ..attention_processor import Attention, SpatialNorm | |
from ..autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution | |
from ..downsampling import Downsample2D | |
from ..modeling_outputs import AutoencoderKLOutput | |
from ..modeling_utils import ModelMixin | |
from ..resnet import ResnetBlock2D | |
from ..upsampling import Upsample2D | |
class AllegroTemporalConvLayer(nn.Module): | |
r""" | |
Temporal convolutional layer that can be used for video (sequence of images) input. Code adapted from: | |
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016 | |
""" | |
def __init__( | |
self, | |
in_dim: int, | |
out_dim: Optional[int] = None, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
up_sample: bool = False, | |
down_sample: bool = False, | |
stride: int = 1, | |
) -> None: | |
super().__init__() | |
out_dim = out_dim or in_dim | |
pad_h = pad_w = int((stride - 1) * 0.5) | |
pad_t = 0 | |
self.down_sample = down_sample | |
self.up_sample = up_sample | |
if down_sample: | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, in_dim), | |
nn.SiLU(), | |
nn.Conv3d(in_dim, out_dim, (2, stride, stride), stride=(2, 1, 1), padding=(0, pad_h, pad_w)), | |
) | |
elif up_sample: | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, in_dim), | |
nn.SiLU(), | |
nn.Conv3d(in_dim, out_dim * 2, (1, stride, stride), padding=(0, pad_h, pad_w)), | |
) | |
else: | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, in_dim), | |
nn.SiLU(), | |
nn.Conv3d(in_dim, out_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)), | |
) | |
self.conv2 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)), | |
) | |
self.conv3 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)), | |
) | |
self.conv4 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, out_dim), | |
nn.SiLU(), | |
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)), | |
) | |
def _pad_temporal_dim(hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = torch.cat((hidden_states[:, :, 0:1], hidden_states), dim=2) | |
hidden_states = torch.cat((hidden_states, hidden_states[:, :, -1:]), dim=2) | |
return hidden_states | |
def forward(self, hidden_states: torch.Tensor, batch_size: int) -> torch.Tensor: | |
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
if self.down_sample: | |
identity = hidden_states[:, :, ::2] | |
elif self.up_sample: | |
identity = hidden_states.repeat_interleave(2, dim=2) | |
else: | |
identity = hidden_states | |
if self.down_sample or self.up_sample: | |
hidden_states = self.conv1(hidden_states) | |
else: | |
hidden_states = self._pad_temporal_dim(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if self.up_sample: | |
hidden_states = hidden_states.unflatten(1, (2, -1)).permute(0, 2, 3, 1, 4, 5).flatten(2, 3) | |
hidden_states = self._pad_temporal_dim(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
hidden_states = self._pad_temporal_dim(hidden_states) | |
hidden_states = self.conv3(hidden_states) | |
hidden_states = self._pad_temporal_dim(hidden_states) | |
hidden_states = self.conv4(hidden_states) | |
hidden_states = identity + hidden_states | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
return hidden_states | |
class AllegroDownBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
spatial_downsample: bool = True, | |
temporal_downsample: bool = False, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
temp_convs = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=None, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
temp_convs.append( | |
AllegroTemporalConvLayer( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
if temporal_downsample: | |
self.temp_convs_down = AllegroTemporalConvLayer( | |
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, down_sample=True, stride=3 | |
) | |
self.add_temp_downsample = temporal_downsample | |
if spatial_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
batch_size = hidden_states.shape[0] | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
for resnet, temp_conv in zip(self.resnets, self.temp_convs): | |
hidden_states = resnet(hidden_states, temb=None) | |
hidden_states = temp_conv(hidden_states, batch_size=batch_size) | |
if self.add_temp_downsample: | |
hidden_states = self.temp_convs_down(hidden_states, batch_size=batch_size) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
return hidden_states | |
class AllegroUpBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
spatial_upsample: bool = True, | |
temporal_upsample: bool = False, | |
temb_channels: Optional[int] = None, | |
): | |
super().__init__() | |
resnets = [] | |
temp_convs = [] | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=input_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
temp_convs.append( | |
AllegroTemporalConvLayer( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
self.add_temp_upsample = temporal_upsample | |
if temporal_upsample: | |
self.temp_conv_up = AllegroTemporalConvLayer( | |
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, up_sample=True, stride=3 | |
) | |
if spatial_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
batch_size = hidden_states.shape[0] | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
for resnet, temp_conv in zip(self.resnets, self.temp_convs): | |
hidden_states = resnet(hidden_states, temb=None) | |
hidden_states = temp_conv(hidden_states, batch_size=batch_size) | |
if self.add_temp_upsample: | |
hidden_states = self.temp_conv_up(hidden_states, batch_size=batch_size) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
return hidden_states | |
class AllegroMidBlock3DConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
add_attention: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
): | |
super().__init__() | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
temp_convs = [ | |
AllegroTemporalConvLayer( | |
in_channels, | |
in_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
] | |
attentions = [] | |
if attention_head_dim is None: | |
attention_head_dim = in_channels | |
for _ in range(num_layers): | |
if add_attention: | |
attentions.append( | |
Attention( | |
in_channels, | |
heads=in_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None, | |
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
else: | |
attentions.append(None) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
temp_convs.append( | |
AllegroTemporalConvLayer( | |
in_channels, | |
in_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
self.attentions = nn.ModuleList(attentions) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
batch_size = hidden_states.shape[0] | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
hidden_states = self.resnets[0](hidden_states, temb=None) | |
hidden_states = self.temp_convs[0](hidden_states, batch_size=batch_size) | |
for attn, resnet, temp_conv in zip(self.attentions, self.resnets[1:], self.temp_convs[1:]): | |
hidden_states = attn(hidden_states) | |
hidden_states = resnet(hidden_states, temb=None) | |
hidden_states = temp_conv(hidden_states, batch_size=batch_size) | |
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
return hidden_states | |
class AllegroEncoder3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str, ...] = ( | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
), | |
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
temporal_downsample_blocks: Tuple[bool, ...] = [True, True, False, False], | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
double_z: bool = True, | |
): | |
super().__init__() | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[0], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.temp_conv_in = nn.Conv3d( | |
in_channels=block_out_channels[0], | |
out_channels=block_out_channels[0], | |
kernel_size=(3, 1, 1), | |
padding=(1, 0, 0), | |
) | |
self.down_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
if down_block_type == "AllegroDownBlock3D": | |
down_block = AllegroDownBlock3D( | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
spatial_downsample=not is_final_block, | |
temporal_downsample=temporal_downsample_blocks[i], | |
resnet_eps=1e-6, | |
downsample_padding=0, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
) | |
else: | |
raise ValueError("Invalid `down_block_type` encountered. Must be `AllegroDownBlock3D`") | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = AllegroMidBlock3DConv( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
) | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
conv_out_channels = 2 * out_channels if double_z else out_channels | |
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0)) | |
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) | |
self.gradient_checkpointing = False | |
def forward(self, sample: torch.Tensor) -> torch.Tensor: | |
batch_size = sample.shape[0] | |
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
sample = self.conv_in(sample) | |
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
residual = sample | |
sample = self.temp_conv_in(sample) | |
sample = sample + residual | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
# Down blocks | |
for down_block in self.down_blocks: | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) | |
# Mid block | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) | |
else: | |
# Down blocks | |
for down_block in self.down_blocks: | |
sample = down_block(sample) | |
# Mid block | |
sample = self.mid_block(sample) | |
# Post process | |
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
residual = sample | |
sample = self.temp_conv_out(sample) | |
sample = sample + residual | |
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
sample = self.conv_out(sample) | |
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
return sample | |
class AllegroDecoder3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int = 4, | |
out_channels: int = 3, | |
up_block_types: Tuple[str, ...] = ( | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
), | |
temporal_upsample_blocks: Tuple[bool, ...] = [False, True, True, False], | |
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
norm_type: str = "group", # group, spatial | |
): | |
super().__init__() | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[-1], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.temp_conv_in = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0)) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
temb_channels = in_channels if norm_type == "spatial" else None | |
# mid | |
self.mid_block = AllegroMidBlock3DConv( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default" if norm_type == "group" else norm_type, | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=temb_channels, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
if up_block_type == "AllegroUpBlock3D": | |
up_block = AllegroUpBlock3D( | |
num_layers=layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
spatial_upsample=not is_final_block, | |
temporal_upsample=temporal_upsample_blocks[i], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
temb_channels=temb_channels, | |
resnet_time_scale_shift=norm_type, | |
) | |
else: | |
raise ValueError("Invalid `UP_block_type` encountered. Must be `AllegroUpBlock3D`") | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if norm_type == "spatial": | |
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) | |
else: | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3, 1, 1), padding=(1, 0, 0)) | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
self.gradient_checkpointing = False | |
def forward(self, sample: torch.Tensor) -> torch.Tensor: | |
batch_size = sample.shape[0] | |
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
sample = self.conv_in(sample) | |
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
residual = sample | |
sample = self.temp_conv_in(sample) | |
sample = sample + residual | |
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
# Mid block | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) | |
# Up blocks | |
for up_block in self.up_blocks: | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample) | |
else: | |
# Mid block | |
sample = self.mid_block(sample) | |
sample = sample.to(upscale_dtype) | |
# Up blocks | |
for up_block in self.up_blocks: | |
sample = up_block(sample) | |
# Post process | |
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
residual = sample | |
sample = self.temp_conv_out(sample) | |
sample = sample + residual | |
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
sample = self.conv_out(sample) | |
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
return sample | |
class AutoencoderKLAllegro(ModelMixin, ConfigMixin): | |
r""" | |
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used in | |
[Allegro](https://github.com/rhymes-ai/Allegro). | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
in_channels (int, defaults to `3`): | |
Number of channels in the input image. | |
out_channels (int, defaults to `3`): | |
Number of channels in the output. | |
down_block_types (`Tuple[str, ...]`, defaults to `("AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D")`): | |
Tuple of strings denoting which types of down blocks to use. | |
up_block_types (`Tuple[str, ...]`, defaults to `("AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D")`): | |
Tuple of strings denoting which types of up blocks to use. | |
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`): | |
Tuple of integers denoting number of output channels in each block. | |
temporal_downsample_blocks (`Tuple[bool, ...]`, defaults to `(True, True, False, False)`): | |
Tuple of booleans denoting which blocks to enable temporal downsampling in. | |
latent_channels (`int`, defaults to `4`): | |
Number of channels in latents. | |
layers_per_block (`int`, defaults to `2`): | |
Number of resnet or attention or temporal convolution layers per down/up block. | |
act_fn (`str`, defaults to `"silu"`): | |
The activation function to use. | |
norm_num_groups (`int`, defaults to `32`): | |
Number of groups to use in normalization layers. | |
temporal_compression_ratio (`int`, defaults to `4`): | |
Ratio by which temporal dimension of samples are compressed. | |
sample_size (`int`, defaults to `320`): | |
Default latent size. | |
scaling_factor (`float`, defaults to `0.13235`): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
force_upcast (`bool`, default to `True`): | |
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE | |
can be fine-tuned / trained to a lower range without loosing too much precision in which case | |
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str, ...] = ( | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
), | |
up_block_types: Tuple[str, ...] = ( | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
), | |
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
temporal_downsample_blocks: Tuple[bool, ...] = (True, True, False, False), | |
temporal_upsample_blocks: Tuple[bool, ...] = (False, True, True, False), | |
latent_channels: int = 4, | |
layers_per_block: int = 2, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
temporal_compression_ratio: float = 4, | |
sample_size: int = 320, | |
scaling_factor: float = 0.13, | |
force_upcast: bool = True, | |
) -> None: | |
super().__init__() | |
self.encoder = AllegroEncoder3D( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
temporal_downsample_blocks=temporal_downsample_blocks, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
double_z=True, | |
) | |
self.decoder = AllegroDecoder3D( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
temporal_upsample_blocks=temporal_upsample_blocks, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
norm_num_groups=norm_num_groups, | |
act_fn=act_fn, | |
) | |
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) | |
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) | |
# TODO(aryan): For the 1.0.0 refactor, `temporal_compression_ratio` can be inferred directly and we don't need | |
# to use a specific parameter here or in other VAEs. | |
self.use_slicing = False | |
self.use_tiling = False | |
self.spatial_compression_ratio = 2 ** (len(block_out_channels) - 1) | |
self.tile_overlap_t = 8 | |
self.tile_overlap_h = 120 | |
self.tile_overlap_w = 80 | |
sample_frames = 24 | |
self.kernel = (sample_frames, sample_size, sample_size) | |
self.stride = ( | |
sample_frames - self.tile_overlap_t, | |
sample_size - self.tile_overlap_h, | |
sample_size - self.tile_overlap_w, | |
) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (AllegroEncoder3D, AllegroDecoder3D)): | |
module.gradient_checkpointing = value | |
def enable_tiling(self) -> None: | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.use_tiling = True | |
def disable_tiling(self) -> None: | |
r""" | |
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_tiling = False | |
def enable_slicing(self) -> None: | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_slicing = True | |
def disable_slicing(self) -> None: | |
r""" | |
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_slicing = False | |
def _encode(self, x: torch.Tensor) -> torch.Tensor: | |
# TODO(aryan) | |
# if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): | |
if self.use_tiling: | |
return self.tiled_encode(x) | |
raise NotImplementedError("Encoding without tiling has not been implemented yet.") | |
def encode( | |
self, x: torch.Tensor, return_dict: bool = True | |
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
r""" | |
Encode a batch of videos into latents. | |
Args: | |
x (`torch.Tensor`): | |
Input batch of videos. | |
return_dict (`bool`, defaults to `True`): | |
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
Returns: | |
The latent representations of the encoded videos. If `return_dict` is True, a | |
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
""" | |
if self.use_slicing and x.shape[0] > 1: | |
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] | |
h = torch.cat(encoded_slices) | |
else: | |
h = self._encode(x) | |
posterior = DiagonalGaussianDistribution(h) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def _decode(self, z: torch.Tensor) -> torch.Tensor: | |
# TODO(aryan): refactor tiling implementation | |
# if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): | |
if self.use_tiling: | |
return self.tiled_decode(z) | |
raise NotImplementedError("Decoding without tiling has not been implemented yet.") | |
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
""" | |
Decode a batch of videos. | |
Args: | |
z (`torch.Tensor`): | |
Input batch of latent vectors. | |
return_dict (`bool`, defaults to `True`): | |
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
if self.use_slicing and z.shape[0] > 1: | |
decoded_slices = [self._decode(z_slice) for z_slice in z.split(1)] | |
decoded = torch.cat(decoded_slices) | |
else: | |
decoded = self._decode(z) | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor: | |
local_batch_size = 1 | |
rs = self.spatial_compression_ratio | |
rt = self.config.temporal_compression_ratio | |
batch_size, num_channels, num_frames, height, width = x.shape | |
output_num_frames = math.floor((num_frames - self.kernel[0]) / self.stride[0]) + 1 | |
output_height = math.floor((height - self.kernel[1]) / self.stride[1]) + 1 | |
output_width = math.floor((width - self.kernel[2]) / self.stride[2]) + 1 | |
count = 0 | |
output_latent = x.new_zeros( | |
( | |
output_num_frames * output_height * output_width, | |
2 * self.config.latent_channels, | |
self.kernel[0] // rt, | |
self.kernel[1] // rs, | |
self.kernel[2] // rs, | |
) | |
) | |
vae_batch_input = x.new_zeros((local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2])) | |
for i in range(output_num_frames): | |
for j in range(output_height): | |
for k in range(output_width): | |
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0] | |
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1] | |
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2] | |
video_cube = x[:, :, n_start:n_end, h_start:h_end, w_start:w_end] | |
vae_batch_input[count % local_batch_size] = video_cube | |
if ( | |
count % local_batch_size == local_batch_size - 1 | |
or count == output_num_frames * output_height * output_width - 1 | |
): | |
latent = self.encoder(vae_batch_input) | |
if ( | |
count == output_num_frames * output_height * output_width - 1 | |
and count % local_batch_size != local_batch_size - 1 | |
): | |
output_latent[count - count % local_batch_size :] = latent[: count % local_batch_size + 1] | |
else: | |
output_latent[count - local_batch_size + 1 : count + 1] = latent | |
vae_batch_input = x.new_zeros( | |
(local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2]) | |
) | |
count += 1 | |
latent = x.new_zeros( | |
(batch_size, 2 * self.config.latent_channels, num_frames // rt, height // rs, width // rs) | |
) | |
output_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs | |
output_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs | |
output_overlap = ( | |
output_kernel[0] - output_stride[0], | |
output_kernel[1] - output_stride[1], | |
output_kernel[2] - output_stride[2], | |
) | |
for i in range(output_num_frames): | |
n_start, n_end = i * output_stride[0], i * output_stride[0] + output_kernel[0] | |
for j in range(output_height): | |
h_start, h_end = j * output_stride[1], j * output_stride[1] + output_kernel[1] | |
for k in range(output_width): | |
w_start, w_end = k * output_stride[2], k * output_stride[2] + output_kernel[2] | |
latent_mean = _prepare_for_blend( | |
(i, output_num_frames, output_overlap[0]), | |
(j, output_height, output_overlap[1]), | |
(k, output_width, output_overlap[2]), | |
output_latent[i * output_height * output_width + j * output_width + k].unsqueeze(0), | |
) | |
latent[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean | |
latent = latent.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
latent = self.quant_conv(latent) | |
latent = latent.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
return latent | |
def tiled_decode(self, z: torch.Tensor) -> torch.Tensor: | |
local_batch_size = 1 | |
rs = self.spatial_compression_ratio | |
rt = self.config.temporal_compression_ratio | |
latent_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs | |
latent_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs | |
batch_size, num_channels, num_frames, height, width = z.shape | |
## post quant conv (a mapping) | |
z = z.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
z = self.post_quant_conv(z) | |
z = z.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
output_num_frames = math.floor((num_frames - latent_kernel[0]) / latent_stride[0]) + 1 | |
output_height = math.floor((height - latent_kernel[1]) / latent_stride[1]) + 1 | |
output_width = math.floor((width - latent_kernel[2]) / latent_stride[2]) + 1 | |
count = 0 | |
decoded_videos = z.new_zeros( | |
( | |
output_num_frames * output_height * output_width, | |
self.config.out_channels, | |
self.kernel[0], | |
self.kernel[1], | |
self.kernel[2], | |
) | |
) | |
vae_batch_input = z.new_zeros( | |
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2]) | |
) | |
for i in range(output_num_frames): | |
for j in range(output_height): | |
for k in range(output_width): | |
n_start, n_end = i * latent_stride[0], i * latent_stride[0] + latent_kernel[0] | |
h_start, h_end = j * latent_stride[1], j * latent_stride[1] + latent_kernel[1] | |
w_start, w_end = k * latent_stride[2], k * latent_stride[2] + latent_kernel[2] | |
current_latent = z[:, :, n_start:n_end, h_start:h_end, w_start:w_end] | |
vae_batch_input[count % local_batch_size] = current_latent | |
if ( | |
count % local_batch_size == local_batch_size - 1 | |
or count == output_num_frames * output_height * output_width - 1 | |
): | |
current_video = self.decoder(vae_batch_input) | |
if ( | |
count == output_num_frames * output_height * output_width - 1 | |
and count % local_batch_size != local_batch_size - 1 | |
): | |
decoded_videos[count - count % local_batch_size :] = current_video[ | |
: count % local_batch_size + 1 | |
] | |
else: | |
decoded_videos[count - local_batch_size + 1 : count + 1] = current_video | |
vae_batch_input = z.new_zeros( | |
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2]) | |
) | |
count += 1 | |
video = z.new_zeros((batch_size, self.config.out_channels, num_frames * rt, height * rs, width * rs)) | |
video_overlap = ( | |
self.kernel[0] - self.stride[0], | |
self.kernel[1] - self.stride[1], | |
self.kernel[2] - self.stride[2], | |
) | |
for i in range(output_num_frames): | |
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0] | |
for j in range(output_height): | |
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1] | |
for k in range(output_width): | |
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2] | |
out_video_blend = _prepare_for_blend( | |
(i, output_num_frames, video_overlap[0]), | |
(j, output_height, video_overlap[1]), | |
(k, output_width, video_overlap[2]), | |
decoded_videos[i * output_height * output_width + j * output_width + k].unsqueeze(0), | |
) | |
video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend | |
video = video.permute(0, 2, 1, 3, 4).contiguous() | |
return video | |
def forward( | |
self, | |
sample: torch.Tensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Args: | |
sample (`torch.Tensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
generator (`torch.Generator`, *optional*): | |
PyTorch random number generator. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def _prepare_for_blend(n_param, h_param, w_param, x): | |
# TODO(aryan): refactor | |
n, n_max, overlap_n = n_param | |
h, h_max, overlap_h = h_param | |
w, w_max, overlap_w = w_param | |
if overlap_n > 0: | |
if n > 0: # the head overlap part decays from 0 to 1 | |
x[:, :, 0:overlap_n, :, :] = x[:, :, 0:overlap_n, :, :] * ( | |
torch.arange(0, overlap_n).float().to(x.device) / overlap_n | |
).reshape(overlap_n, 1, 1) | |
if n < n_max - 1: # the tail overlap part decays from 1 to 0 | |
x[:, :, -overlap_n:, :, :] = x[:, :, -overlap_n:, :, :] * ( | |
1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n | |
).reshape(overlap_n, 1, 1) | |
if h > 0: | |
x[:, :, :, 0:overlap_h, :] = x[:, :, :, 0:overlap_h, :] * ( | |
torch.arange(0, overlap_h).float().to(x.device) / overlap_h | |
).reshape(overlap_h, 1) | |
if h < h_max - 1: | |
x[:, :, :, -overlap_h:, :] = x[:, :, :, -overlap_h:, :] * ( | |
1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h | |
).reshape(overlap_h, 1) | |
if w > 0: | |
x[:, :, :, :, 0:overlap_w] = x[:, :, :, :, 0:overlap_w] * ( | |
torch.arange(0, overlap_w).float().to(x.device) / overlap_w | |
) | |
if w < w_max - 1: | |
x[:, :, :, :, -overlap_w:] = x[:, :, :, :, -overlap_w:] * ( | |
1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w | |
) | |
return x | |