Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 Kakao Brain and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import BaseOutput | |
| from ..utils.torch_utils import randn_tensor | |
| from .scheduling_utils import SchedulerMixin | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP | |
| class UnCLIPSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.Tensor | |
| pred_original_sample: Optional[torch.Tensor] = None | |
| # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
| def betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| max_beta=0.999, | |
| alpha_transform_type="cosine", | |
| ): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
| (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
| to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
| Choose from `cosine` or `exp` | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| if alpha_transform_type == "cosine": | |
| def alpha_bar_fn(t): | |
| return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| elif alpha_transform_type == "exp": | |
| def alpha_bar_fn(t): | |
| return math.exp(t * -12.0) | |
| else: | |
| raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| class UnCLIPScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| NOTE: do not use this scheduler. The DDPM scheduler has been updated to support the changes made here. This | |
| scheduler will be removed and replaced with DDPM. | |
| This is a modified DDPM Scheduler specifically for the karlo unCLIP model. | |
| This scheduler has some minor variations in how it calculates the learned range variance and dynamically | |
| re-calculates betas based off the timesteps it is skipping. | |
| The scheduler also uses a slightly different step ratio when computing timesteps to use for inference. | |
| See [`~DDPMScheduler`] for more information on DDPM scheduling | |
| Args: | |
| num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
| variance_type (`str`): | |
| options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small_log` | |
| or `learned_range`. | |
| clip_sample (`bool`, default `True`): | |
| option to clip predicted sample between `-clip_sample_range` and `clip_sample_range` for numerical | |
| stability. | |
| clip_sample_range (`float`, default `1.0`): | |
| The range to clip the sample between. See `clip_sample`. | |
| prediction_type (`str`, default `epsilon`, optional): | |
| prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process) | |
| or `sample` (directly predicting the noisy sample`) | |
| """ | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| variance_type: str = "fixed_small_log", | |
| clip_sample: bool = True, | |
| clip_sample_range: Optional[float] = 1.0, | |
| prediction_type: str = "epsilon", | |
| beta_schedule: str = "squaredcos_cap_v2", | |
| ): | |
| if beta_schedule != "squaredcos_cap_v2": | |
| raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'") | |
| self.betas = betas_for_alpha_bar(num_train_timesteps) | |
| self.alphas = 1.0 - self.betas | |
| self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
| self.one = torch.tensor(1.0) | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| # setable values | |
| self.num_inference_steps = None | |
| self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) | |
| self.variance_type = variance_type | |
| def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.Tensor`): input sample | |
| timestep (`int`, optional): current timestep | |
| Returns: | |
| `torch.Tensor`: scaled input sample | |
| """ | |
| return sample | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
| Note that this scheduler uses a slightly different step ratio than the other diffusers schedulers. The | |
| different step ratio is to mimic the original karlo implementation and does not affect the quality or accuracy | |
| of the results. | |
| Args: | |
| num_inference_steps (`int`): | |
| the number of diffusion steps used when generating samples with a pre-trained model. | |
| """ | |
| self.num_inference_steps = num_inference_steps | |
| step_ratio = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) | |
| timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) | |
| self.timesteps = torch.from_numpy(timesteps).to(device) | |
| def _get_variance(self, t, prev_timestep=None, predicted_variance=None, variance_type=None): | |
| if prev_timestep is None: | |
| prev_timestep = t - 1 | |
| alpha_prod_t = self.alphas_cumprod[t] | |
| alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one | |
| beta_prod_t = 1 - alpha_prod_t | |
| beta_prod_t_prev = 1 - alpha_prod_t_prev | |
| if prev_timestep == t - 1: | |
| beta = self.betas[t] | |
| else: | |
| beta = 1 - alpha_prod_t / alpha_prod_t_prev | |
| # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) | |
| # and sample from it to get previous sample | |
| # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample | |
| variance = beta_prod_t_prev / beta_prod_t * beta | |
| if variance_type is None: | |
| variance_type = self.config.variance_type | |
| # hacks - were probably added for training stability | |
| if variance_type == "fixed_small_log": | |
| variance = torch.log(torch.clamp(variance, min=1e-20)) | |
| variance = torch.exp(0.5 * variance) | |
| elif variance_type == "learned_range": | |
| # NOTE difference with DDPM scheduler | |
| min_log = variance.log() | |
| max_log = beta.log() | |
| frac = (predicted_variance + 1) / 2 | |
| variance = frac * max_log + (1 - frac) * min_log | |
| return variance | |
| def step( | |
| self, | |
| model_output: torch.Tensor, | |
| timestep: int, | |
| sample: torch.Tensor, | |
| prev_timestep: Optional[int] = None, | |
| generator=None, | |
| return_dict: bool = True, | |
| ) -> Union[UnCLIPSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.Tensor`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`torch.Tensor`): | |
| current instance of sample being created by diffusion process. | |
| prev_timestep (`int`, *optional*): The previous timestep to predict the previous sample at. | |
| Used to dynamically compute beta. If not given, `t-1` is used and the pre-computed beta is used. | |
| generator: random number generator. | |
| return_dict (`bool`): option for returning tuple rather than UnCLIPSchedulerOutput class | |
| Returns: | |
| [`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] or `tuple`: | |
| [`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
| returning a tuple, the first element is the sample tensor. | |
| """ | |
| t = timestep | |
| if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": | |
| model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) | |
| else: | |
| predicted_variance = None | |
| # 1. compute alphas, betas | |
| if prev_timestep is None: | |
| prev_timestep = t - 1 | |
| alpha_prod_t = self.alphas_cumprod[t] | |
| alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one | |
| beta_prod_t = 1 - alpha_prod_t | |
| beta_prod_t_prev = 1 - alpha_prod_t_prev | |
| if prev_timestep == t - 1: | |
| beta = self.betas[t] | |
| alpha = self.alphas[t] | |
| else: | |
| beta = 1 - alpha_prod_t / alpha_prod_t_prev | |
| alpha = 1 - beta | |
| # 2. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| elif self.config.prediction_type == "sample": | |
| pred_original_sample = model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" | |
| " for the UnCLIPScheduler." | |
| ) | |
| # 3. Clip "predicted x_0" | |
| if self.config.clip_sample: | |
| pred_original_sample = torch.clamp( | |
| pred_original_sample, -self.config.clip_sample_range, self.config.clip_sample_range | |
| ) | |
| # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t | |
| # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
| pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * beta) / beta_prod_t | |
| current_sample_coeff = alpha ** (0.5) * beta_prod_t_prev / beta_prod_t | |
| # 5. Compute predicted previous sample µ_t | |
| # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
| pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample | |
| # 6. Add noise | |
| variance = 0 | |
| if t > 0: | |
| variance_noise = randn_tensor( | |
| model_output.shape, dtype=model_output.dtype, generator=generator, device=model_output.device | |
| ) | |
| variance = self._get_variance( | |
| t, | |
| predicted_variance=predicted_variance, | |
| prev_timestep=prev_timestep, | |
| ) | |
| if self.variance_type == "fixed_small_log": | |
| variance = variance | |
| elif self.variance_type == "learned_range": | |
| variance = (0.5 * variance).exp() | |
| else: | |
| raise ValueError( | |
| f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" | |
| " for the UnCLIPScheduler." | |
| ) | |
| variance = variance * variance_noise | |
| pred_prev_sample = pred_prev_sample + variance | |
| if not return_dict: | |
| return ( | |
| pred_prev_sample, | |
| pred_original_sample, | |
| ) | |
| return UnCLIPSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise | |
| def add_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.Tensor: | |
| # Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
| # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement | |
| # for the subsequent add_noise calls | |
| self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) | |
| alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) | |
| timesteps = timesteps.to(original_samples.device) | |
| sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
| sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
| while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
| sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
| while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
| noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
| return noisy_samples | |