Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler | |
| from .scheduling_utils import SchedulerMixin, SchedulerOutput | |
| class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021). | |
| This scheduler was used in Stable Audio Open [1]. | |
| [1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358 | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| sigma_min (`float`, *optional*, defaults to 0.3): | |
| Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1]. | |
| sigma_max (`float`, *optional*, defaults to 500): | |
| Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1]. | |
| sigma_data (`float`, *optional*, defaults to 1.0): | |
| The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1]. | |
| sigma_schedule (`str`, *optional*, defaults to `exponential`): | |
| Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper | |
| (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was | |
| incorporated in this model: https://huggingface.co/stabilityai/cosxl. | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| solver_order (`int`, defaults to 2): | |
| The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`. | |
| prediction_type (`str`, defaults to `v_prediction`, *optional*): | |
| Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
| `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
| Video](https://imagen.research.google/video/paper.pdf) paper). | |
| solver_type (`str`, defaults to `midpoint`): | |
| Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the | |
| sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. | |
| lower_order_final (`bool`, defaults to `True`): | |
| Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can | |
| stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. | |
| euler_at_final (`bool`, defaults to `False`): | |
| Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail | |
| richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference | |
| steps, but sometimes may result in blurring. | |
| final_sigmas_type (`str`, defaults to `"zero"`): | |
| The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final | |
| sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. | |
| """ | |
| _compatibles = [] | |
| order = 1 | |
| def __init__( | |
| self, | |
| sigma_min: float = 0.3, | |
| sigma_max: float = 500, | |
| sigma_data: float = 1.0, | |
| sigma_schedule: str = "exponential", | |
| num_train_timesteps: int = 1000, | |
| solver_order: int = 2, | |
| prediction_type: str = "v_prediction", | |
| rho: float = 7.0, | |
| solver_type: str = "midpoint", | |
| lower_order_final: bool = True, | |
| euler_at_final: bool = False, | |
| final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min" | |
| ): | |
| if solver_type not in ["midpoint", "heun"]: | |
| if solver_type in ["logrho", "bh1", "bh2"]: | |
| self.register_to_config(solver_type="midpoint") | |
| else: | |
| raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}") | |
| ramp = torch.linspace(0, 1, num_train_timesteps) | |
| if sigma_schedule == "karras": | |
| sigmas = self._compute_karras_sigmas(ramp) | |
| elif sigma_schedule == "exponential": | |
| sigmas = self._compute_exponential_sigmas(ramp) | |
| self.timesteps = self.precondition_noise(sigmas) | |
| self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| # setable values | |
| self.num_inference_steps = None | |
| self.model_outputs = [None] * solver_order | |
| self.lower_order_nums = 0 | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| def init_noise_sigma(self): | |
| # standard deviation of the initial noise distribution | |
| return (self.config.sigma_max**2 + 1) ** 0.5 | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increase 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def begin_index(self): | |
| """ | |
| The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
| """ | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs | |
| def precondition_inputs(self, sample, sigma): | |
| c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5) | |
| scaled_sample = sample * c_in | |
| return scaled_sample | |
| def precondition_noise(self, sigma): | |
| if not isinstance(sigma, torch.Tensor): | |
| sigma = torch.tensor([sigma]) | |
| return sigma.atan() / math.pi * 2 | |
| # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs | |
| def precondition_outputs(self, sample, model_output, sigma): | |
| sigma_data = self.config.sigma_data | |
| c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) | |
| if self.config.prediction_type == "epsilon": | |
| c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 | |
| elif self.config.prediction_type == "v_prediction": | |
| c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 | |
| else: | |
| raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.") | |
| denoised = c_skip * sample + c_out * model_output | |
| return denoised | |
| # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input | |
| def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | |
| Args: | |
| sample (`torch.Tensor`): | |
| The input sample. | |
| timestep (`int`, *optional*): | |
| The current timestep in the diffusion chain. | |
| Returns: | |
| `torch.Tensor`: | |
| A scaled input sample. | |
| """ | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| sigma = self.sigmas[self.step_index] | |
| sample = self.precondition_inputs(sample, sigma) | |
| self.is_scale_input_called = True | |
| return sample | |
| def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| self.num_inference_steps = num_inference_steps | |
| ramp = torch.linspace(0, 1, self.num_inference_steps) | |
| if self.config.sigma_schedule == "karras": | |
| sigmas = self._compute_karras_sigmas(ramp) | |
| elif self.config.sigma_schedule == "exponential": | |
| sigmas = self._compute_exponential_sigmas(ramp) | |
| sigmas = sigmas.to(dtype=torch.float32, device=device) | |
| self.timesteps = self.precondition_noise(sigmas) | |
| if self.config.final_sigmas_type == "sigma_min": | |
| sigma_last = self.config.sigma_min | |
| elif self.config.final_sigmas_type == "zero": | |
| sigma_last = 0 | |
| else: | |
| raise ValueError( | |
| f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" | |
| ) | |
| self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)]) | |
| self.model_outputs = [ | |
| None, | |
| ] * self.config.solver_order | |
| self.lower_order_nums = 0 | |
| # add an index counter for schedulers that allow duplicated timesteps | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| # if a noise sampler is used, reinitialise it | |
| self.noise_sampler = None | |
| # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas | |
| def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: | |
| """Constructs the noise schedule of Karras et al. (2022).""" | |
| sigma_min = sigma_min or self.config.sigma_min | |
| sigma_max = sigma_max or self.config.sigma_max | |
| rho = self.config.rho | |
| min_inv_rho = sigma_min ** (1 / rho) | |
| max_inv_rho = sigma_max ** (1 / rho) | |
| sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
| return sigmas | |
| # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas | |
| def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: | |
| """Implementation closely follows k-diffusion. | |
| https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26 | |
| """ | |
| sigma_min = sigma_min or self.config.sigma_min | |
| sigma_max = sigma_max or self.config.sigma_max | |
| sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) | |
| return sigmas | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t | |
| def _sigma_to_t(self, sigma, log_sigmas): | |
| # get log sigma | |
| log_sigma = np.log(np.maximum(sigma, 1e-10)) | |
| # get distribution | |
| dists = log_sigma - log_sigmas[:, np.newaxis] | |
| # get sigmas range | |
| low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) | |
| high_idx = low_idx + 1 | |
| low = log_sigmas[low_idx] | |
| high = log_sigmas[high_idx] | |
| # interpolate sigmas | |
| w = (low - log_sigma) / (low - high) | |
| w = np.clip(w, 0, 1) | |
| # transform interpolation to time range | |
| t = (1 - w) * low_idx + w * high_idx | |
| t = t.reshape(sigma.shape) | |
| return t | |
| def _sigma_to_alpha_sigma_t(self, sigma): | |
| alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1 | |
| sigma_t = sigma | |
| return alpha_t, sigma_t | |
| def convert_model_output( | |
| self, | |
| model_output: torch.Tensor, | |
| sample: torch.Tensor = None, | |
| ) -> torch.Tensor: | |
| """ | |
| Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is | |
| designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an | |
| integral of the data prediction model. | |
| <Tip> | |
| The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise | |
| prediction and data prediction models. | |
| </Tip> | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from the learned diffusion model. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| Returns: | |
| `torch.Tensor`: | |
| The converted model output. | |
| """ | |
| sigma = self.sigmas[self.step_index] | |
| x0_pred = self.precondition_outputs(sample, model_output, sigma) | |
| return x0_pred | |
| def dpm_solver_first_order_update( | |
| self, | |
| model_output: torch.Tensor, | |
| sample: torch.Tensor = None, | |
| noise: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| """ | |
| One step for the first-order DPMSolver (equivalent to DDIM). | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from the learned diffusion model. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| Returns: | |
| `torch.Tensor`: | |
| The sample tensor at the previous timestep. | |
| """ | |
| sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index] | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s = torch.log(alpha_s) - torch.log(sigma_s) | |
| h = lambda_t - lambda_s | |
| assert noise is not None | |
| x_t = ( | |
| (sigma_t / sigma_s * torch.exp(-h)) * sample | |
| + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output | |
| + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
| ) | |
| return x_t | |
| def multistep_dpm_solver_second_order_update( | |
| self, | |
| model_output_list: List[torch.Tensor], | |
| sample: torch.Tensor = None, | |
| noise: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| """ | |
| One step for the second-order multistep DPMSolver. | |
| Args: | |
| model_output_list (`List[torch.Tensor]`): | |
| The direct outputs from learned diffusion model at current and latter timesteps. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| Returns: | |
| `torch.Tensor`: | |
| The sample tensor at the previous timestep. | |
| """ | |
| sigma_t, sigma_s0, sigma_s1 = ( | |
| self.sigmas[self.step_index + 1], | |
| self.sigmas[self.step_index], | |
| self.sigmas[self.step_index - 1], | |
| ) | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) | |
| alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
| lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) | |
| m0, m1 = model_output_list[-1], model_output_list[-2] | |
| h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 | |
| r0 = h_0 / h | |
| D0, D1 = m0, (1.0 / r0) * (m0 - m1) | |
| # sde-dpmsolver++ | |
| assert noise is not None | |
| if self.config.solver_type == "midpoint": | |
| x_t = ( | |
| (sigma_t / sigma_s0 * torch.exp(-h)) * sample | |
| + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 | |
| + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 | |
| + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
| ) | |
| elif self.config.solver_type == "heun": | |
| x_t = ( | |
| (sigma_t / sigma_s0 * torch.exp(-h)) * sample | |
| + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 | |
| + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 | |
| + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
| ) | |
| return x_t | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| index_candidates = (schedule_timesteps == timestep).nonzero() | |
| if len(index_candidates) == 0: | |
| step_index = len(self.timesteps) - 1 | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| elif len(index_candidates) > 1: | |
| step_index = index_candidates[1].item() | |
| else: | |
| step_index = index_candidates[0].item() | |
| return step_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index | |
| def _init_step_index(self, timestep): | |
| """ | |
| Initialize the step_index counter for the scheduler. | |
| """ | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| def step( | |
| self, | |
| model_output: torch.Tensor, | |
| timestep: Union[int, torch.Tensor], | |
| sample: torch.Tensor, | |
| generator=None, | |
| return_dict: bool = True, | |
| ) -> Union[SchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with | |
| the multistep DPMSolver. | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`int`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # Improve numerical stability for small number of steps | |
| lower_order_final = (self.step_index == len(self.timesteps) - 1) and ( | |
| self.config.euler_at_final | |
| or (self.config.lower_order_final and len(self.timesteps) < 15) | |
| or self.config.final_sigmas_type == "zero" | |
| ) | |
| lower_order_second = ( | |
| (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 | |
| ) | |
| model_output = self.convert_model_output(model_output, sample=sample) | |
| for i in range(self.config.solver_order - 1): | |
| self.model_outputs[i] = self.model_outputs[i + 1] | |
| self.model_outputs[-1] = model_output | |
| if self.noise_sampler is None: | |
| seed = None | |
| if generator is not None: | |
| seed = ( | |
| [g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed() | |
| ) | |
| self.noise_sampler = BrownianTreeNoiseSampler( | |
| model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed | |
| ) | |
| noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to( | |
| model_output.device | |
| ) | |
| if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: | |
| prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) | |
| elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: | |
| prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) | |
| if self.lower_order_nums < self.config.solver_order: | |
| self.lower_order_nums += 1 | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return SchedulerOutput(prev_sample=prev_sample) | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise | |
| def add_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| timesteps: torch.Tensor, | |
| ) -> torch.Tensor: | |
| # Make sure sigmas and timesteps have the same device and dtype as original_samples | |
| sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
| if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
| # mps does not support float64 | |
| schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
| timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
| else: | |
| schedule_timesteps = self.timesteps.to(original_samples.device) | |
| timesteps = timesteps.to(original_samples.device) | |
| # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index | |
| if self.begin_index is None: | |
| step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] | |
| elif self.step_index is not None: | |
| # add_noise is called after first denoising step (for inpainting) | |
| step_indices = [self.step_index] * timesteps.shape[0] | |
| else: | |
| # add noise is called before first denoising step to create initial latent(img2img) | |
| step_indices = [self.begin_index] * timesteps.shape[0] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < len(original_samples.shape): | |
| sigma = sigma.unsqueeze(-1) | |
| noisy_samples = original_samples + noise * sigma | |
| return noisy_samples | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |