Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| from ....models import UNet2DModel | |
| from ....schedulers import PNDMScheduler | |
| from ....utils.torch_utils import randn_tensor | |
| from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| class PNDMPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for unconditional image generation. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Parameters: | |
| unet ([`UNet2DModel`]): | |
| A `UNet2DModel` to denoise the encoded image latents. | |
| scheduler ([`PNDMScheduler`]): | |
| A `PNDMScheduler` to be used in combination with `unet` to denoise the encoded image. | |
| """ | |
| unet: UNet2DModel | |
| scheduler: PNDMScheduler | |
| def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler): | |
| super().__init__() | |
| scheduler = PNDMScheduler.from_config(scheduler.config) | |
| self.register_modules(unet=unet, scheduler=scheduler) | |
| def __call__( | |
| self, | |
| batch_size: int = 1, | |
| num_inference_steps: int = 50, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| **kwargs, | |
| ) -> Union[ImagePipelineOutput, Tuple]: | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| batch_size (`int`, `optional`, defaults to 1): | |
| The number of images to generate. | |
| num_inference_steps (`int`, `optional`, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| generator (`torch.Generator`, `optional`): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| output_type (`str`, `optional`, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. | |
| Example: | |
| ```py | |
| >>> from diffusers import PNDMPipeline | |
| >>> # load model and scheduler | |
| >>> pndm = PNDMPipeline.from_pretrained("google/ddpm-cifar10-32") | |
| >>> # run pipeline in inference (sample random noise and denoise) | |
| >>> image = pndm().images[0] | |
| >>> # save image | |
| >>> image.save("pndm_generated_image.png") | |
| ``` | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
| returned where the first element is a list with the generated images. | |
| """ | |
| # For more information on the sampling method you can take a look at Algorithm 2 of | |
| # the official paper: https://arxiv.org/pdf/2202.09778.pdf | |
| # Sample gaussian noise to begin loop | |
| image = randn_tensor( | |
| (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), | |
| generator=generator, | |
| device=self.device, | |
| ) | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| for t in self.progress_bar(self.scheduler.timesteps): | |
| model_output = self.unet(image, t).sample | |
| image = self.scheduler.step(model_output, t, image).prev_sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| image = image.cpu().permute(0, 2, 3, 1).numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |