RiverZ's picture
upd
3b609b9
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from ..base import DiffusersQuantizer
if TYPE_CHECKING:
from ...models.modeling_utils import ModelMixin
from ...utils import (
get_module_from_name,
is_accelerate_available,
is_accelerate_version,
is_gguf_available,
is_gguf_version,
is_torch_available,
logging,
)
if is_torch_available() and is_gguf_available():
import torch
from .utils import (
GGML_QUANT_SIZES,
GGUFParameter,
_dequantize_gguf_and_restore_linear,
_quant_shape_from_byte_shape,
_replace_with_gguf_linear,
)
logger = logging.get_logger(__name__)
class GGUFQuantizer(DiffusersQuantizer):
use_keep_in_fp32_modules = True
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.compute_dtype = quantization_config.compute_dtype
self.pre_quantized = quantization_config.pre_quantized
self.modules_to_not_convert = quantization_config.modules_to_not_convert
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"):
raise ImportError(
"Loading GGUF Parameters requires `accelerate` installed in your enviroment: `pip install 'accelerate>=0.26.0'`"
)
if not is_gguf_available() or is_gguf_version("<", "0.10.0"):
raise ImportError(
"To load GGUF format files you must have `gguf` installed in your environment: `pip install gguf>=0.10.0`"
)
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if target_dtype != torch.uint8:
logger.info(f"target_dtype {target_dtype} is replaced by `torch.uint8` for GGUF quantization")
return torch.uint8
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
torch_dtype = self.compute_dtype
return torch_dtype
def check_quantized_param_shape(self, param_name, current_param, loaded_param):
loaded_param_shape = loaded_param.shape
current_param_shape = current_param.shape
quant_type = loaded_param.quant_type
block_size, type_size = GGML_QUANT_SIZES[quant_type]
inferred_shape = _quant_shape_from_byte_shape(loaded_param_shape, type_size, block_size)
if inferred_shape != current_param_shape:
raise ValueError(
f"{param_name} has an expected quantized shape of: {inferred_shape}, but receieved shape: {loaded_param_shape}"
)
return True
def check_if_quantized_param(
self,
model: "ModelMixin",
param_value: Union["GGUFParameter", "torch.Tensor"],
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
if isinstance(param_value, GGUFParameter):
return True
return False
def create_quantized_param(
self,
model: "ModelMixin",
param_value: Union["GGUFParameter", "torch.Tensor"],
param_name: str,
target_device: "torch.device",
state_dict: Optional[Dict[str, Any]] = None,
unexpected_keys: Optional[List[str]] = None,
):
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
if tensor_name in module._parameters:
module._parameters[tensor_name] = param_value.to(target_device)
if tensor_name in module._buffers:
module._buffers[tensor_name] = param_value.to(target_device)
def _process_model_before_weight_loading(
self,
model: "ModelMixin",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
state_dict = kwargs.get("state_dict", None)
self.modules_to_not_convert.extend(keep_in_fp32_modules)
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None]
_replace_with_gguf_linear(
model, self.compute_dtype, state_dict, modules_to_not_convert=self.modules_to_not_convert
)
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs):
return model
@property
def is_serializable(self):
return False
@property
def is_trainable(self) -> bool:
return False
def _dequantize(self, model):
is_model_on_cpu = model.device.type == "cpu"
if is_model_on_cpu:
logger.info(
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device."
)
model.to(torch.cuda.current_device())
model = _dequantize_gguf_and_restore_linear(model, self.modules_to_not_convert)
if is_model_on_cpu:
model.to("cpu")
return model