Spaces:
Running
on
Zero
Running
on
Zero
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union | |
from ..base import DiffusersQuantizer | |
if TYPE_CHECKING: | |
from ...models.modeling_utils import ModelMixin | |
from ...utils import ( | |
get_module_from_name, | |
is_accelerate_available, | |
is_accelerate_version, | |
is_gguf_available, | |
is_gguf_version, | |
is_torch_available, | |
logging, | |
) | |
if is_torch_available() and is_gguf_available(): | |
import torch | |
from .utils import ( | |
GGML_QUANT_SIZES, | |
GGUFParameter, | |
_dequantize_gguf_and_restore_linear, | |
_quant_shape_from_byte_shape, | |
_replace_with_gguf_linear, | |
) | |
logger = logging.get_logger(__name__) | |
class GGUFQuantizer(DiffusersQuantizer): | |
use_keep_in_fp32_modules = True | |
def __init__(self, quantization_config, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
self.compute_dtype = quantization_config.compute_dtype | |
self.pre_quantized = quantization_config.pre_quantized | |
self.modules_to_not_convert = quantization_config.modules_to_not_convert | |
if not isinstance(self.modules_to_not_convert, list): | |
self.modules_to_not_convert = [self.modules_to_not_convert] | |
def validate_environment(self, *args, **kwargs): | |
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): | |
raise ImportError( | |
"Loading GGUF Parameters requires `accelerate` installed in your enviroment: `pip install 'accelerate>=0.26.0'`" | |
) | |
if not is_gguf_available() or is_gguf_version("<", "0.10.0"): | |
raise ImportError( | |
"To load GGUF format files you must have `gguf` installed in your environment: `pip install gguf>=0.10.0`" | |
) | |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory | |
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: | |
# need more space for buffers that are created during quantization | |
max_memory = {key: val * 0.90 for key, val in max_memory.items()} | |
return max_memory | |
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": | |
if target_dtype != torch.uint8: | |
logger.info(f"target_dtype {target_dtype} is replaced by `torch.uint8` for GGUF quantization") | |
return torch.uint8 | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
if torch_dtype is None: | |
torch_dtype = self.compute_dtype | |
return torch_dtype | |
def check_quantized_param_shape(self, param_name, current_param, loaded_param): | |
loaded_param_shape = loaded_param.shape | |
current_param_shape = current_param.shape | |
quant_type = loaded_param.quant_type | |
block_size, type_size = GGML_QUANT_SIZES[quant_type] | |
inferred_shape = _quant_shape_from_byte_shape(loaded_param_shape, type_size, block_size) | |
if inferred_shape != current_param_shape: | |
raise ValueError( | |
f"{param_name} has an expected quantized shape of: {inferred_shape}, but receieved shape: {loaded_param_shape}" | |
) | |
return True | |
def check_if_quantized_param( | |
self, | |
model: "ModelMixin", | |
param_value: Union["GGUFParameter", "torch.Tensor"], | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
) -> bool: | |
if isinstance(param_value, GGUFParameter): | |
return True | |
return False | |
def create_quantized_param( | |
self, | |
model: "ModelMixin", | |
param_value: Union["GGUFParameter", "torch.Tensor"], | |
param_name: str, | |
target_device: "torch.device", | |
state_dict: Optional[Dict[str, Any]] = None, | |
unexpected_keys: Optional[List[str]] = None, | |
): | |
module, tensor_name = get_module_from_name(model, param_name) | |
if tensor_name not in module._parameters and tensor_name not in module._buffers: | |
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") | |
if tensor_name in module._parameters: | |
module._parameters[tensor_name] = param_value.to(target_device) | |
if tensor_name in module._buffers: | |
module._buffers[tensor_name] = param_value.to(target_device) | |
def _process_model_before_weight_loading( | |
self, | |
model: "ModelMixin", | |
device_map, | |
keep_in_fp32_modules: List[str] = [], | |
**kwargs, | |
): | |
state_dict = kwargs.get("state_dict", None) | |
self.modules_to_not_convert.extend(keep_in_fp32_modules) | |
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] | |
_replace_with_gguf_linear( | |
model, self.compute_dtype, state_dict, modules_to_not_convert=self.modules_to_not_convert | |
) | |
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): | |
return model | |
def is_serializable(self): | |
return False | |
def is_trainable(self) -> bool: | |
return False | |
def _dequantize(self, model): | |
is_model_on_cpu = model.device.type == "cpu" | |
if is_model_on_cpu: | |
logger.info( | |
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device." | |
) | |
model.to(torch.cuda.current_device()) | |
model = _dequantize_gguf_and_restore_linear(model, self.modules_to_not_convert) | |
if is_model_on_cpu: | |
model.to("cpu") | |
return model | |