Spaces:
Running
Running
Rivalcoder
commited on
Commit
·
9c6982b
1
Parent(s):
97394ae
New Try
Browse files- app.py +93 -24
- requirements.txt +2 -1
app.py
CHANGED
@@ -7,10 +7,12 @@ import time
|
|
7 |
import os
|
8 |
import json
|
9 |
from typing import Dict, List, Any
|
10 |
-
from fastapi import FastAPI, UploadFile, File,
|
11 |
-
from fastapi.responses import JSONResponse
|
12 |
import uuid
|
13 |
from pathlib import Path
|
|
|
|
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
@@ -304,39 +306,106 @@ def process_video(video_path: str) -> Dict[str, Any]:
|
|
304 |
"error": None
|
305 |
}
|
306 |
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
async def analyze_video(file: UploadFile = File(...)):
|
|
|
309 |
try:
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
# Generate unique filename
|
315 |
-
file_ext = file.filename.split(".")[-1]
|
316 |
-
temp_filename = f"{uuid.uuid4()}.{file_ext}"
|
317 |
-
temp_path = upload_dir / temp_filename
|
318 |
-
|
319 |
-
# Save the uploaded file
|
320 |
-
with open(temp_path, "wb") as buffer:
|
321 |
-
buffer.write(await file.read())
|
322 |
-
|
323 |
-
# Process the video
|
324 |
-
result = process_video(str(temp_path))
|
325 |
-
|
326 |
-
# Clean up - remove the temporary file
|
327 |
-
os.remove(temp_path)
|
328 |
|
329 |
if not result["success"]:
|
330 |
raise HTTPException(status_code=400, detail=result.get("error", "Processing failed"))
|
331 |
-
|
332 |
return JSONResponse(content=result)
|
333 |
|
334 |
except Exception as e:
|
335 |
-
# Clean up if file was created
|
336 |
if 'temp_path' in locals() and os.path.exists(temp_path):
|
337 |
-
os.
|
338 |
raise HTTPException(status_code=500, detail=str(e))
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
if __name__ == "__main__":
|
341 |
import uvicorn
|
342 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
7 |
import os
|
8 |
import json
|
9 |
from typing import Dict, List, Any
|
10 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
11 |
+
from fastapi.responses import JSONResponse, HTMLResponse
|
12 |
import uuid
|
13 |
from pathlib import Path
|
14 |
+
import gradio as gr
|
15 |
+
import tempfile
|
16 |
|
17 |
app = FastAPI()
|
18 |
|
|
|
306 |
"error": None
|
307 |
}
|
308 |
|
309 |
+
# Gradio Interface Functions
|
310 |
+
def gradio_analyze_video(video_path: str):
|
311 |
+
"""Wrapper function for Gradio interface"""
|
312 |
+
result = process_video(video_path)
|
313 |
+
if not result["success"]:
|
314 |
+
return {"error": result.get("error", "Processing failed")}
|
315 |
+
|
316 |
+
# Format results for better Gradio display
|
317 |
+
summary = result["results"]["summary"]
|
318 |
+
detections = result["results"]["detections"]
|
319 |
+
|
320 |
+
output = {
|
321 |
+
"summary": {
|
322 |
+
"total_frames": summary["total_frames"],
|
323 |
+
"faces_detected": summary["total_detections"],
|
324 |
+
"dominant_emotion": summary["dominant_emotion"],
|
325 |
+
"emotion_distribution": summary["emotions_count"]
|
326 |
+
},
|
327 |
+
"sample_detections": detections[:5] # Show first 5 detections
|
328 |
+
}
|
329 |
+
return output
|
330 |
+
|
331 |
+
def save_upload_file_tmp(upload_file: UploadFile) -> str:
|
332 |
+
"""Save uploaded file to temporary location"""
|
333 |
+
try:
|
334 |
+
suffix = Path(upload_file.filename).suffix
|
335 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
|
336 |
+
tmp.write(upload_file.file.read())
|
337 |
+
return tmp.name
|
338 |
+
finally:
|
339 |
+
upload_file.file.close()
|
340 |
+
|
341 |
+
# Gradio Interface
|
342 |
+
with gr.Blocks(title="Video Emotion Detection", theme=gr.themes.Soft()) as demo:
|
343 |
+
gr.Markdown("""
|
344 |
+
# 🎭 Video Emotion Detection
|
345 |
+
Upload a video to analyze facial emotions frame by frame
|
346 |
+
""")
|
347 |
+
|
348 |
+
with gr.Row():
|
349 |
+
with gr.Column():
|
350 |
+
video_input = gr.Video(
|
351 |
+
label="Upload Video",
|
352 |
+
sources=["upload"],
|
353 |
+
type="filepath"
|
354 |
+
)
|
355 |
+
submit_btn = gr.Button("Analyze Video", variant="primary")
|
356 |
+
|
357 |
+
with gr.Column():
|
358 |
+
output_json = gr.JSON(label="Analysis Results")
|
359 |
+
gr.Markdown("""
|
360 |
+
### Results Interpretation
|
361 |
+
- **Dominant Emotion**: Most frequently detected emotion
|
362 |
+
- **Emotion Distribution**: Count of each emotion detected
|
363 |
+
- **Sample Detections**: First 5 emotion detections
|
364 |
+
""")
|
365 |
+
|
366 |
+
submit_btn.click(
|
367 |
+
fn=gradio_analyze_video,
|
368 |
+
inputs=video_input,
|
369 |
+
outputs=output_json,
|
370 |
+
api_name="predict"
|
371 |
+
)
|
372 |
+
|
373 |
+
# FastAPI Endpoints
|
374 |
+
@app.post("/api/analyze-video")
|
375 |
async def analyze_video(file: UploadFile = File(...)):
|
376 |
+
"""Original FastAPI endpoint"""
|
377 |
try:
|
378 |
+
temp_path = save_upload_file_tmp(file)
|
379 |
+
result = process_video(temp_path)
|
380 |
+
os.unlink(temp_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
if not result["success"]:
|
383 |
raise HTTPException(status_code=400, detail=result.get("error", "Processing failed"))
|
|
|
384 |
return JSONResponse(content=result)
|
385 |
|
386 |
except Exception as e:
|
|
|
387 |
if 'temp_path' in locals() and os.path.exists(temp_path):
|
388 |
+
os.unlink(temp_path)
|
389 |
raise HTTPException(status_code=500, detail=str(e))
|
390 |
|
391 |
+
@app.get("/", response_class=HTMLResponse)
|
392 |
+
async def root():
|
393 |
+
"""Redirect root to Gradio interface"""
|
394 |
+
return """
|
395 |
+
<html>
|
396 |
+
<head>
|
397 |
+
<title>Video Emotion Detection</title>
|
398 |
+
<meta http-equiv="refresh" content="0; url=/gradio" />
|
399 |
+
</head>
|
400 |
+
<body>
|
401 |
+
<p>Redirecting to Gradio interface... <a href="/gradio">Click here</a> if not redirected.</p>
|
402 |
+
</body>
|
403 |
+
</html>
|
404 |
+
"""
|
405 |
+
|
406 |
+
# Mount Gradio app to FastAPI
|
407 |
+
app = gr.mount_gradio_app(app, demo, path="/gradio")
|
408 |
+
|
409 |
if __name__ == "__main__":
|
410 |
import uvicorn
|
411 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
CHANGED
@@ -5,4 +5,5 @@ torchvision
|
|
5 |
opencv-python
|
6 |
numpy
|
7 |
Pillow
|
8 |
-
python-multipart
|
|
|
|
5 |
opencv-python
|
6 |
numpy
|
7 |
Pillow
|
8 |
+
python-multipart
|
9 |
+
gradio
|