Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. | |
import math | |
import struct | |
import inspect | |
from dataclasses import dataclass | |
from typing import Any, Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class ModelArgs: | |
dim: int = 4096 | |
n_layers: int = 32 | |
n_heads: int = 32 | |
n_kv_heads: Optional[int] = None | |
vocab_size: int = -1 # defined later by tokenizer | |
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 | |
norm_eps: float = 1e-5 | |
max_seq_len: int = 2048 | |
dropout: float = 0.0 | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device) # type: ignore | |
freqs = torch.outer(t, freqs).float() # type: ignore | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
return freqs_cis | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
return xq_out.type_as(xq), xk_out.type_as(xk) | |
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: | |
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" | |
bs, slen, n_kv_heads, head_dim = x.shape | |
if n_rep == 1: | |
return x | |
return ( | |
x[:, :, :, None, :] | |
.expand(bs, slen, n_kv_heads, n_rep, head_dim) | |
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) | |
) | |
class Attention(nn.Module): | |
def __init__(self, args: ModelArgs): | |
super().__init__() | |
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads | |
model_parallel_size = 1 | |
self.n_local_heads = args.n_heads // model_parallel_size | |
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size | |
self.n_rep = self.n_local_heads // self.n_local_kv_heads | |
self.head_dim = args.dim // args.n_heads | |
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) | |
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) | |
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) | |
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) | |
self.attn_dropout = nn.Dropout(args.dropout) | |
self.resid_dropout = nn.Dropout(args.dropout) | |
self.dropout = args.dropout | |
# use flash attention or a manual implementation? | |
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') | |
if not self.flash: | |
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") | |
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf")) | |
mask = torch.triu(mask, diagonal=1) | |
self.register_buffer("mask", mask) | |
def forward( | |
self, | |
x: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
): | |
bsz, seqlen, _ = x.shape | |
# QKV | |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) | |
# RoPE relative positional embeddings | |
xq, xk = apply_rotary_emb(xq, xk, freqs_cis) | |
# grouped multiquery attention: expand out keys and values | |
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) | |
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) | |
# make heads into a batch dimension | |
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) | |
xk = xk.transpose(1, 2) | |
xv = xv.transpose(1, 2) | |
# flash implementation | |
if self.flash: | |
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True) | |
else: | |
# manual implementation | |
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim) | |
scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen) | |
scores = F.softmax(scores.float(), dim=-1).type_as(xq) | |
scores = self.attn_dropout(scores) | |
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim) | |
# restore time as batch dimension and concat heads | |
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) | |
# final projection into the residual stream | |
output = self.wo(output) | |
output = self.resid_dropout(output) | |
return output | |
class FeedForward(nn.Module): | |
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float): | |
super().__init__() | |
hidden_dim = int(2 * hidden_dim / 3) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = nn.Linear(dim, hidden_dim, bias=False) | |
self.w2 = nn.Linear(hidden_dim, dim, bias=False) | |
self.w3 = nn.Linear(dim, hidden_dim, bias=False) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) | |
class TransformerBlock(nn.Module): | |
def __init__(self, layer_id: int, args: ModelArgs): | |
super().__init__() | |
self.n_heads = args.n_heads | |
self.dim = args.dim | |
self.head_dim = args.dim // args.n_heads | |
self.attention = Attention(args) | |
self.feed_forward = FeedForward( | |
dim=args.dim, | |
hidden_dim=4 * args.dim, | |
multiple_of=args.multiple_of, | |
dropout=args.dropout, | |
) | |
self.layer_id = layer_id | |
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
def forward(self, x, freqs_cis): | |
h = x + self.attention.forward(self.attention_norm(x), freqs_cis) | |
out = h + self.feed_forward.forward(self.ffn_norm(h)) | |
return out | |
class Transformer(nn.Module): | |
def __init__(self, params: ModelArgs): | |
super().__init__() | |
self.params = params | |
self.vocab_size = params.vocab_size | |
self.n_layers = params.n_layers | |
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) | |
self.dropout = nn.Dropout(params.dropout) | |
self.layers = torch.nn.ModuleList() | |
for layer_id in range(params.n_layers): | |
self.layers.append(TransformerBlock(layer_id, params)) | |
self.norm = RMSNorm(params.dim, eps=params.norm_eps) | |
self.output = nn.Linear(params.dim, params.vocab_size, bias=False) | |
# share the unembedding parameters with the embedding parameters | |
self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying | |
# some useful precompute for the RoPE relative positional embeddings. TODO why * 2 here? confuse | |
freqs_cis = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len * 2) | |
self.register_buffer("freqs_cis", freqs_cis, persistent=False) | |
# init all weights | |
self.apply(self._init_weights) | |
# apply special scaled init to the residual projections, per GPT-2 paper | |
for pn, p in self.named_parameters(): | |
if pn.endswith('w3.weight') or pn.endswith('wo.weight'): | |
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers)) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, tokens, targets=None): | |
_bsz, seqlen = tokens.shape | |
h = self.tok_embeddings(tokens) | |
h = self.dropout(h) | |
freqs_cis = self.freqs_cis[:seqlen] | |
for layer in self.layers: | |
h = layer(h, freqs_cis) | |
h = self.norm(h) | |
if targets is not None: | |
# if we are given some desired targets also calculate the loss | |
logits = self.output(h) | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
else: | |
# inference-time mini-optimization: only forward the output on the very last position | |
logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim | |
loss = None | |
return logits, loss | |
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): | |
# start with all of the candidate parameters | |
param_dict = {pn: p for pn, p in self.named_parameters()} | |
# filter out those that do not require grad | |
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} | |
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. | |
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. | |
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] | |
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] | |
optim_groups = [ | |
{'params': decay_params, 'weight_decay': weight_decay}, | |
{'params': nodecay_params, 'weight_decay': 0.0} | |
] | |
num_decay_params = sum(p.numel() for p in decay_params) | |
num_nodecay_params = sum(p.numel() for p in nodecay_params) | |
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") | |
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") | |
# Create AdamW optimizer and use the fused version if it is available | |
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters | |
use_fused = fused_available and device_type == 'cuda' | |
extra_args = dict(fused=True) if use_fused else dict() | |
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) | |
print(f"using fused AdamW: {use_fused}") | |
return optimizer | |
def estimate_mfu(self, fwdbwd_per_iter, dt): | |
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ | |
# first estimate the number of flops we do per iteration. | |
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311 | |
N = sum(p.numel() for p in self.parameters()) | |
cfg = self.params | |
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len | |
flops_per_token = 6*N + 12*L*H*Q*T | |
flops_per_fwdbwd = flops_per_token * T | |
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter | |
# express our flops throughput as ratio of A100 bfloat16 peak flops | |
flops_achieved = flops_per_iter * (1.0/dt) # per second | |
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS | |
mfu = flops_achieved / flops_promised | |
return mfu | |
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): | |
""" | |
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete | |
the sequence max_new_tokens times, feeding the predictions back into the model each time. | |
Most likely you'll want to make sure to be in model.eval() mode of operation for this. | |
Also note this is a super inefficient version of sampling with no key/value cache. | |
""" | |
for _ in range(max_new_tokens): | |
# if the sequence context is growing too long we must crop it at block_size | |
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:] | |
# forward the model to get the logits for the index in the sequence | |
logits, _ = self(idx_cond) | |
logits = logits[:, -1, :] # crop to just the final time step | |
if temperature == 0.0: | |
# "sample" the single most likely index | |
_, idx_next = torch.topk(logits, k=1, dim=-1) | |
else: | |
# pluck the logits at the final step and scale by desired temperature | |
logits = logits / temperature | |
# optionally crop the logits to only the top k options | |
if top_k is not None: | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
logits[logits < v[:, [-1]]] = -float('Inf') | |
# apply softmax to convert logits to (normalized) probabilities | |
probs = F.softmax(logits, dim=-1) | |
idx_next = torch.multinomial(probs, num_samples=1) | |
# append sampled index to the running sequence and continue | |
idx = torch.cat((idx, idx_next), dim=1) | |
return idx | |
def export(self, filepath='model.bin'): | |
"""export the model weights in fp32 into .bin file to be read from C""" | |
f = open(filepath, 'wb') | |
def serialize(t): | |
d = t.detach().cpu().view(-1).numpy().astype(np.float32) | |
b = struct.pack(f'{len(d)}f', *d) | |
f.write(b) | |
# first write out the header | |
hidden_dim = self.layers[0].feed_forward.w1.weight.shape[0] | |
p = self.params | |
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads | |
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads, | |
n_kv_heads, p.vocab_size, p.max_seq_len) | |
f.write(header) | |
# next write out the embedding weights | |
serialize(self.tok_embeddings.weight) | |
# now all the layers | |
# attention weights | |
for layer in self.layers: | |
serialize(layer.attention_norm.weight) | |
for layer in self.layers: | |
serialize(layer.attention.wq.weight) | |
for layer in self.layers: | |
serialize(layer.attention.wk.weight) | |
for layer in self.layers: | |
serialize(layer.attention.wv.weight) | |
for layer in self.layers: | |
serialize(layer.attention.wo.weight) | |
# ffn weights | |
for layer in self.layers: | |
serialize(layer.ffn_norm.weight) | |
for layer in self.layers: | |
serialize(layer.feed_forward.w1.weight) | |
for layer in self.layers: | |
serialize(layer.feed_forward.w2.weight) | |
for layer in self.layers: | |
serialize(layer.feed_forward.w3.weight) | |
# final rmsnorm | |
serialize(self.norm.weight) | |
# note: no need to write final classifier weights due to weight sharing | |
# freqs_cis | |
serialize(self.freqs_cis.real[:p.max_seq_len]) | |
serialize(self.freqs_cis.imag[:p.max_seq_len]) | |
# write to binary file | |
f.close() | |
print(f"wrote {filepath}") | |