|
import warnings |
|
warnings.simplefilter(action='ignore', category=FutureWarning) |
|
import itertools |
|
import os |
|
import time |
|
import argparse |
|
import json |
|
import torch |
|
import torch.nn.functional as F |
|
from torch.utils.tensorboard import SummaryWriter |
|
from torch.utils.data import DistributedSampler, DataLoader |
|
import torch.multiprocessing as mp |
|
from torch.distributed import init_process_group |
|
from torch.nn.parallel import DistributedDataParallel |
|
from env import AttrDict, build_env |
|
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist |
|
from models import Generator, MultiPeriodDiscriminator, MultiScaleDiscriminator, feature_loss, generator_loss,\ |
|
discriminator_loss |
|
from hifiutils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
def train(rank, a, h, warm_start): |
|
if h.num_gpus > 1: |
|
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'], |
|
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank) |
|
|
|
torch.cuda.manual_seed(h.seed) |
|
device = torch.device('cuda:{:d}'.format(rank)) |
|
|
|
generator = Generator(h).to(device) |
|
mpd = MultiPeriodDiscriminator().to(device) |
|
msd = MultiScaleDiscriminator().to(device) |
|
|
|
if rank == 0: |
|
print(generator) |
|
os.makedirs(a.checkpoint_path, exist_ok=True) |
|
print("checkpoints directory : ", a.checkpoint_path) |
|
|
|
if os.path.isdir(a.checkpoint_path): |
|
cp_g = scan_checkpoint(a.checkpoint_path, 'g_') |
|
cp_do = scan_checkpoint(a.checkpoint_path, 'do_') |
|
|
|
steps = 0 |
|
if cp_g is None or cp_do is None: |
|
state_dict_do = None |
|
last_epoch = -1 |
|
else: |
|
state_dict_g = load_checkpoint(cp_g, device) |
|
state_dict_do = load_checkpoint(cp_do, device) |
|
generator.load_state_dict(state_dict_g['generator']) |
|
mpd.load_state_dict(state_dict_do['mpd']) |
|
msd.load_state_dict(state_dict_do['msd']) |
|
if warm_start: |
|
steps = 1 |
|
last_epoch = 0 |
|
else: |
|
steps = state_dict_do['steps'] + 1 |
|
last_epoch = state_dict_do['epoch'] |
|
|
|
if h.num_gpus > 1: |
|
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) |
|
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) |
|
msd = DistributedDataParallel(msd, device_ids=[rank]).to(device) |
|
|
|
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]) |
|
optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()), |
|
h.learning_rate, betas=[h.adam_b1, h.adam_b2]) |
|
|
|
if state_dict_do is not None or warm_start: |
|
optim_g.load_state_dict(state_dict_do['optim_g']) |
|
optim_d.load_state_dict(state_dict_do['optim_d']) |
|
if warm_start: |
|
optim_g.param_groups[0]["lr"] = h.learning_rate |
|
optim_d.param_groups[0]["lr"] = h.learning_rate |
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch) |
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch) |
|
|
|
training_filelist, validation_filelist = get_dataset_filelist(a) |
|
|
|
trainset = MelDataset(training_filelist, h.segment_size, h.n_fft, h.num_mels, |
|
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0, |
|
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device, |
|
fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir) |
|
|
|
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None |
|
|
|
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False, |
|
sampler=train_sampler, |
|
batch_size=h.batch_size, |
|
pin_memory=True, |
|
drop_last=True) |
|
|
|
if rank == 0: |
|
validset = MelDataset(validation_filelist, h.segment_size, h.n_fft, h.num_mels, |
|
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0, |
|
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, |
|
base_mels_path=a.input_mels_dir) |
|
validation_loader = DataLoader(validset, num_workers=1, shuffle=False, |
|
sampler=None, |
|
batch_size=1, |
|
pin_memory=True, |
|
drop_last=True) |
|
|
|
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs')) |
|
|
|
generator.train() |
|
mpd.train() |
|
msd.train() |
|
for epoch in range(max(0, last_epoch), a.training_epochs): |
|
for param_group in optim_g.param_groups: |
|
print("Current learning rate: " + str(param_group["lr"])) |
|
if rank == 0: |
|
start = time.time() |
|
print("Epoch: {}".format(epoch+1)) |
|
|
|
if h.num_gpus > 1: |
|
train_sampler.set_epoch(epoch) |
|
|
|
for i, batch in enumerate(train_loader): |
|
if rank == 0: |
|
start_b = time.time() |
|
x, y, _, y_mel = batch |
|
x = torch.autograd.Variable(x.to(device, non_blocking=True)) |
|
y = torch.autograd.Variable(y.to(device, non_blocking=True)) |
|
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True)) |
|
y = y.unsqueeze(1) |
|
|
|
y_g_hat = generator(x) |
|
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, |
|
h.fmin, h.fmax_for_loss) |
|
|
|
optim_d.zero_grad() |
|
|
|
|
|
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) |
|
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g) |
|
|
|
|
|
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) |
|
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g) |
|
|
|
loss_disc_all = loss_disc_s + loss_disc_f |
|
|
|
loss_disc_all.backward() |
|
optim_d.step() |
|
|
|
|
|
optim_g.zero_grad() |
|
|
|
|
|
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 |
|
|
|
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) |
|
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) |
|
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) |
|
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) |
|
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) |
|
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) |
|
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel |
|
|
|
loss_gen_all.backward() |
|
optim_g.step() |
|
|
|
if rank == 0: |
|
|
|
if steps % a.stdout_interval == 0: |
|
with torch.no_grad(): |
|
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() |
|
|
|
print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'. |
|
format(steps, loss_gen_all, mel_error, time.time() - start_b)) |
|
|
|
|
|
if steps % a.checkpoint_interval == 0 and steps != 0: |
|
checkpoint_path = "{}/g_00000000".format(a.checkpoint_path) |
|
save_checkpoint(checkpoint_path, |
|
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()}) |
|
checkpoint_path = "{}/do_00000000".format(a.checkpoint_path) |
|
save_checkpoint(checkpoint_path, |
|
{'mpd': (mpd.module if h.num_gpus > 1 |
|
else mpd).state_dict(), |
|
'msd': (msd.module if h.num_gpus > 1 |
|
else msd).state_dict(), |
|
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps, |
|
'epoch': epoch}) |
|
|
|
|
|
if steps % a.summary_interval == 0: |
|
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) |
|
sw.add_scalar("training/mel_spec_error", mel_error, steps) |
|
|
|
|
|
if steps % a.validation_interval == 0 and not a.fine_tuning: |
|
generator.eval() |
|
torch.cuda.empty_cache() |
|
val_err_tot = 0 |
|
with torch.no_grad(): |
|
for j, batch in enumerate(validation_loader): |
|
x, y, _, y_mel = batch |
|
y_g_hat = generator(x.to(device)) |
|
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True)) |
|
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, |
|
h.hop_size, h.win_size, |
|
h.fmin, h.fmax_for_loss) |
|
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() |
|
|
|
if j <= 4: |
|
if steps == 0: |
|
sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate) |
|
sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps) |
|
|
|
sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate) |
|
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, |
|
h.sampling_rate, h.hop_size, h.win_size, |
|
h.fmin, h.fmax) |
|
sw.add_figure('generated/y_hat_spec_{}'.format(j), |
|
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps) |
|
|
|
val_err = val_err_tot / (j+1) |
|
sw.add_scalar("validation/mel_spec_error", val_err, steps) |
|
|
|
generator.train() |
|
|
|
steps += 1 |
|
|
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
if rank == 0: |
|
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start))) |
|
|
|
|
|
def main(): |
|
print('Initializing Training Process..') |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--group_name', default=None) |
|
parser.add_argument('--input_wavs_dir', default='LJSpeech-1.1/wavs') |
|
parser.add_argument('--input_mels_dir', default='ft_dataset') |
|
parser.add_argument('--input_training_file', default='LJSpeech-1.1/training.txt') |
|
parser.add_argument('--input_validation_file', default='LJSpeech-1.1/validation.txt') |
|
parser.add_argument('--checkpoint_path', default='cp_hifigan') |
|
parser.add_argument('--config', default='') |
|
parser.add_argument('--training_epochs', default=3100, type=int) |
|
parser.add_argument('--stdout_interval', default=5, type=int) |
|
parser.add_argument('--checkpoint_interval', default=5000, type=int) |
|
parser.add_argument('--summary_interval', default=100, type=int) |
|
parser.add_argument('--validation_interval', default=1000, type=int) |
|
parser.add_argument('--fine_tuning', default=False, type=bool) |
|
parser.add_argument('--warm_start', default=False, type=bool) |
|
|
|
a = parser.parse_args() |
|
|
|
with open(a.config) as f: |
|
data = f.read() |
|
|
|
json_config = json.loads(data) |
|
h = AttrDict(json_config) |
|
build_env(a.config, 'config.json', a.checkpoint_path) |
|
|
|
torch.manual_seed(h.seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(h.seed) |
|
h.num_gpus = torch.cuda.device_count() |
|
h.batch_size = int(h.batch_size / h.num_gpus) |
|
print('Batch size per GPU :', h.batch_size) |
|
else: |
|
pass |
|
|
|
if h.num_gpus > 1: |
|
mp.spawn(train, nprocs=h.num_gpus, args=(a, h, a.warm_start,)) |
|
else: |
|
train(0, a, h, a.warm_start) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|