OmkarThawakar
initail commit
ed00004
from typing import Any
import einops
import torch
import torch.nn.functional as F
from torch import nn
from transformers.models.bert.configuration_bert import BertConfig
from src.model.blip import create_vit, init_tokenizer, load_checkpoint
from src.model.med import BertModel
from src.tools.utils import print_dist
class BLIPCir(nn.Module):
def __init__(
self,
loss: Any,
med_config="configs/med_config.json",
image_size=384,
vit="large",
vit_grad_ckpt=True,
vit_ckpt_layer=12,
embed_dim=256,
train_vit=False,
):
"""
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
"""
super().__init__()
self.loss = loss
self.visual_encoder, vision_width = create_vit(
vit, image_size, vit_grad_ckpt, vit_ckpt_layer
)
self.tokenizer = init_tokenizer()
med_config = BertConfig.from_json_file(med_config)
med_config.encoder_width = vision_width
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
text_width = self.text_encoder.config.hidden_size
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.train_vit = train_vit
if not self.train_vit:
# Do not train visual encoder
for p in self.visual_encoder.parameters():
p.requires_grad = False
for p in self.vision_proj.parameters():
p.requires_grad = False
self.temp = 0.07
def forward(self, batch, fabric):
ref_img, tar_feat, caption, _ = batch
device = ref_img.device
if self.train_vit:
ref_img_embs = self.visual_encoder(ref_img)
else:
with torch.no_grad():
ref_img_embs = self.visual_encoder(ref_img)
# Encode the target image
tar_feat = tar_feat.to(device)
tar_img_feat = F.normalize(tar_feat, dim=-1)
# Encode the reference image
ref_img_atts = torch.ones(ref_img_embs.size()[:-1], dtype=torch.long).to(device)
text = self.tokenizer(
caption,
padding="max_length",
truncation=True,
max_length=35,
return_tensors="pt",
).to(device)
# Shift encoder
encoder_input_ids = text.input_ids.clone()
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
query_embs = self.text_encoder(
encoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=ref_img_embs,
encoder_attention_mask=ref_img_atts,
return_dict=True,
)
query_feat = query_embs.last_hidden_state[:, 0, :]
query_feat = F.normalize(self.text_proj(query_feat), dim=-1)
if fabric.world_size > 1:
# d: devices, b: batch size, e: embedding dim
query_feat = fabric.all_gather(query_feat, sync_grads=True)
query_feat = einops.rearrange(query_feat, "d b e -> (d b) e")
tar_img_feat = fabric.all_gather(tar_img_feat, sync_grads=True)
tar_img_feat = einops.rearrange(tar_img_feat, "d b e -> (d b) e")
return self.loss(query_feat, tar_img_feat, self.temp)
def blip_cir(model, ckpt_path, **kwargs):
if ckpt_path:
model, msg = load_checkpoint(model, ckpt_path)
print_dist("missing keys:")
print_dist(msg.missing_keys)
return model