Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch OpenAI GPT-2 model.""" | |
import math | |
import os | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import random | |
import torch | |
import torch.utils.checkpoint | |
from packaging import version | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.models.gpt2.modeling_gpt2 import load_tf_weights_in_gpt2, GPT2LMHeadModel, GPT2MLP, GPT2Attention, GPT2Block, GPT2Model | |
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTAttention, OPTDecoderLayer, OPTModel, OPTDecoder | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel, SequenceSummary | |
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer | |
from transformers.utils import ( | |
ModelOutput, | |
logging, | |
) | |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
from transformers.models.opt.configuration_opt import OPTConfig | |
if version.parse(torch.__version__) >= version.parse("1.6"): | |
is_amp_available = True | |
from torch.cuda.amp import autocast | |
else: | |
is_amp_available = False | |
class ThisOPTConfig(OPTConfig): | |
model_type = "this_opt" | |
def __init__( | |
self, | |
cross_attention_reduce_factor = 1, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.cross_attention_reduce_factor = cross_attention_reduce_factor | |
class ThisOPTAttention(OPTAttention): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
dropout = 0.0, | |
is_decoder = False, | |
bias = True, | |
config=None, | |
is_cross_attention=False, | |
): | |
super().__init__(embed_dim,num_heads, dropout,is_decoder,bias) | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.cross_attention_reduce_factor = config.cross_attention_reduce_factor | |
self.head_dim = int(self.head_dim / self.cross_attention_reduce_factor) | |
if is_cross_attention: | |
#print("self", int(embed_dim / self.cross_attention_reduce_factor)) | |
self.k_proj = nn.Linear(768, int(embed_dim / self.cross_attention_reduce_factor), bias=bias) | |
#print("self.k_proj",self.k_proj) | |
self.v_proj = nn.Linear(768, int(embed_dim / self.cross_attention_reduce_factor), bias=bias) | |
self.q_proj = nn.Linear(embed_dim, int(embed_dim / self.cross_attention_reduce_factor), bias=bias) | |
self.out_proj = nn.Linear(int(embed_dim / self.cross_attention_reduce_factor),embed_dim, bias=bias) | |
self.embed_dim=int(embed_dim / self.cross_attention_reduce_factor) | |
else: | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim , bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def forward( | |
self, | |
hidden_states, | |
key_value_states = None, | |
past_key_value = None, | |
attention_mask = None, | |
layer_head_mask = None, | |
output_attentions= False, | |
): | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 | |
if attn_weights.dtype == torch.float16: | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) | |
else: | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned aross GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
class ThisOPTDecoderLayer(OPTDecoderLayer): | |
def __init__(self, config): | |
super().__init__(config) | |
if config.add_cross_attention: | |
self.encoder_attn = ThisOPTAttention( | |
embed_dim=self.embed_dim, | |
num_heads=config.num_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
#bias=config.enable_bias, | |
config=config, | |
is_cross_attention=True | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim,elementwise_affine=config.layer_norm_elementwise_affine) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask= None, | |
encoder_hidden_states = None, | |
encoder_attention_mask = None, | |
layer_head_mask = None, | |
cross_attn_head_mask = None, | |
output_attentions = False, | |
use_cache = False, | |
past_key_value = None, | |
): | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
residual = hidden_states | |
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention | |
if self.do_layer_norm_before: | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# Cross-Attention Block | |
cross_attn_present_key_value = None | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = hidden_states | |
hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
layer_head_mask=cross_attn_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# add cross-attn to positions 3,4 of present_key_value tuple | |
present_key_value = present_key_value + cross_attn_present_key_value | |
# 350m applies layer norm AFTER attention | |
if not self.do_layer_norm_before: | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Fully Connected | |
hidden_states_shape = hidden_states.shape | |
hidden_states = hidden_states.reshape(-1, hidden_states.size(-1)) | |
residual = hidden_states | |
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention | |
if self.do_layer_norm_before: | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = (residual + hidden_states).view(hidden_states_shape) | |
# 350m applies layer norm AFTER attention | |
if not self.do_layer_norm_before: | |
hidden_states = self.final_layer_norm(hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class ThisOPTDecoder(OPTDecoder): | |
def __init__(self, config): | |
super().__init__(config) | |
self.layers = nn.ModuleList([ThisOPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
def forward( | |
self, | |
input_ids = None, | |
attention_mask = None, | |
encoder_hidden_states=None, | |
encoder_attention_mask = None, | |
head_mask = None, | |
cross_attn_head_mask = None, | |
past_key_values = None, | |
inputs_embeds = None, | |
use_cache = None, | |
output_attentions = None, | |
output_hidden_states = None, | |
return_dict = None, | |
): | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# embed positions | |
if attention_mask is None: | |
attention_mask = torch.ones(inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device) | |
pos_embeds = self.embed_positions(attention_mask, past_key_values_length) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, input_shape, inputs_embeds, past_key_values_length | |
) | |
if self.project_in is not None: | |
inputs_embeds = self.project_in(inputs_embeds) | |
hidden_states = inputs_embeds + pos_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
# check if head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask], ["head_mask"]): | |
if attn_mask is not None: | |
if attn_mask.size()[0] != (len(self.layers)): | |
raise ValueError( | |
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
for idx, decoder_layer in enumerate(self.layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
dropout_probability = random.uniform(0, 1) | |
if self.training and (dropout_probability < self.layerdrop): | |
continue | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, output_attentions, None) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
attention_mask, | |
head_mask[idx] if head_mask is not None else None, | |
None, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attn_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
attention_mask=attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if self.final_layer_norm is not None: | |
hidden_states = self.final_layer_norm(hidden_states) | |
if self.project_out is not None: | |
hidden_states = self.project_out(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
class ThisOPTModel(OPTModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.decoder = ThisOPTDecoder(config) | |
def forward( | |
self, | |
input_ids = None, | |
attention_mask = None, | |
encoder_hidden_states=None, | |
encoder_attention_mask = None, | |
head_mask = None, | |
cross_attn_head_mask = None, | |
past_key_values = None, | |
inputs_embeds = None, | |
use_cache = None, | |
output_attentions = None, | |
output_hidden_states = None, | |
return_dict = None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_hidden_states is not None and encoder_attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
cross_attn_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
head_mask=head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs | |
return BaseModelOutputWithPast( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
hidden_states=decoder_outputs.hidden_states, | |
attentions=decoder_outputs.attentions, | |
) | |
class ThisOPTForCausalLM(OPTForCausalLM): | |
config_class = ThisOPTConfig | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = ThisOPTModel(config) | |
def forward( | |
self, | |
input_ids = None, | |
attention_mask = None, | |
encoder_hidden_states=None, | |
encoder_attention_mask = None, | |
head_mask = None, | |
cross_attn_head_mask = None, | |
past_key_values = None, | |
inputs_embeds = None, | |
labels = None, | |
use_cache = None, | |
output_attentions = None, | |
output_hidden_states = None, | |
return_dict = None, | |
) : | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model.decoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask = encoder_attention_mask, | |
cross_attn_head_mask = cross_attn_head_mask, | |
head_mask=head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
logits = self.lm_head(outputs[0]).contiguous() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |