practice3 / app.py
Karin0616
init
e4c0d76
raw
history blame
3.52 kB
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
def ade_palette():
return [
[204, 87, 92], # road (Reddish)
[112, 185, 212], # sidewalk (Blue)
[196, 160, 122], # building (Brown)
[106, 135, 242], # wall (Light Blue)
[91, 192, 222], # fence (Turquoise)
[255, 192, 203], # pole (Pink)
[176, 224, 230], # traffic light (Light Blue)
[222, 49, 99], # traffic sign (Red)
[139, 69, 19], # vegetation (Brown)
[255, 0, 0], # terrain (Red)
[0, 0, 255], # sky (Blue)
[255, 228, 181], # person (Peach)
[128, 0, 0], # rider (Maroon)
[0, 128, 0], # car (Green)
[255, 99, 71], # truck (Tomato)
[0, 255, 0], # bus (Lime)
[128, 0, 128], # train (Purple)
[255, 255, 0], # motorcycle (Yellow)
[128, 0, 128] # bicycle (Purple)
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(400,600)),
outputs=['plot'],
examples=["city1.jpg","city2.jpg","city3.jpg"],
allow_flagging='never')
demo.launch()