RinInori commited on
Commit
86b962b
·
1 Parent(s): e49c280

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +142 -0
  2. config.json +24 -0
  3. requirements.txt +15 -0
app.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel
3
+ import transformers
4
+ import gradio as gr
5
+
6
+ assert (
7
+ "LlamaTokenizer" in transformers._import_structure["models.llama"]
8
+ ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
9
+ from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
10
+
11
+ tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
12
+
13
+ BASE_MODEL = "TheBloke/vicuna-7B-1.1-HF"
14
+ LORA_WEIGHTS = "RinInori/vicuna_finetuned_6_sentiments" #Fine-tuned Alpaca model for sentiment analysis
15
+
16
+ if torch.cuda.is_available():
17
+ device = "cuda"
18
+ else:
19
+ device = "cpu"
20
+ try:
21
+ if torch.backends.mps.is_available():
22
+ device = "mps"
23
+ except:
24
+ pass
25
+
26
+ if device == "cuda":
27
+ model = LlamaForCausalLM.from_pretrained(
28
+ BASE_MODEL,
29
+ load_in_8bit=False,
30
+ torch_dtype=torch.float16,
31
+ device_map="auto",
32
+ )
33
+ model = PeftModel.from_pretrained(
34
+ model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
35
+ )
36
+ elif device == "mps":
37
+ model = LlamaForCausalLM.from_pretrained(
38
+ BASE_MODEL,
39
+ device_map={"": device},
40
+ torch_dtype=torch.float16,
41
+ )
42
+ model = PeftModel.from_pretrained(
43
+ model,
44
+ LORA_WEIGHTS,
45
+ device_map={"": device},
46
+ torch_dtype=torch.float16,
47
+ )
48
+ else:
49
+ model = LlamaForCausalLM.from_pretrained(
50
+ BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
51
+ )
52
+ model = PeftModel.from_pretrained(
53
+ model,
54
+ LORA_WEIGHTS,
55
+ device_map={"": device},
56
+ )
57
+
58
+
59
+ def generate_prompt(instruction, input=None):
60
+ if input:
61
+ return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
62
+ ### Instruction:
63
+ {instruction}
64
+ ### Input:
65
+ {input}
66
+ ### Response:"""
67
+ else:
68
+ return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
69
+ ### Instruction :
70
+ {instruction}
71
+ ### Response :"""
72
+
73
+ if device != "cpu":
74
+ model.half()
75
+ model.eval()
76
+ if torch.__version__ >= "2":
77
+ model = torch.compile(model)
78
+
79
+
80
+ def evaluate(
81
+ instruction,
82
+ input=None,
83
+ temperature=0.1,
84
+ top_p=0.75,
85
+ top_k=40,
86
+ num_beams=4,
87
+ max_new_tokens=128,
88
+ **kwargs,
89
+ ):
90
+ prompt = generate_prompt(instruction, input)
91
+ inputs = tokenizer(prompt, return_tensors="pt")
92
+ input_ids = inputs["input_ids"].to(device)
93
+ generation_config = GenerationConfig(
94
+ temperature=temperature,
95
+ top_p=top_p,
96
+ top_k=top_k,
97
+ num_beams=num_beams,
98
+ **kwargs,
99
+ )
100
+ with torch.no_grad():
101
+ generation_output = model.generate(
102
+ input_ids=input_ids,
103
+ generation_config=generation_config,
104
+ return_dict_in_generate=True,
105
+ output_scores=True,
106
+ max_new_tokens=max_new_tokens,
107
+ )
108
+ s = generation_output.sequences[0]
109
+ output = tokenizer.decode(s)
110
+ return output.split("### Response:")[1].strip()
111
+
112
+
113
+ g = gr.Interface(
114
+ fn=evaluate,
115
+ inputs=[
116
+ gr.components.Textbox(
117
+ lines=2, label="Instruction", placeholder="Type your Instruction here"
118
+ ),
119
+ gr.components.Textbox(lines=2, label="Input", placeholder="none"),
120
+ gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
121
+ gr.components.Slider(minimum=0, maximum=1, value=0.7, label="Top p"),
122
+ gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
123
+ gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
124
+ gr.components.Slider(
125
+ minimum=1, maximum=256, step=1, value=64, label="Max tokens"
126
+ ),
127
+ ],
128
+ outputs=[
129
+ gr.inputs.Textbox(
130
+ lines=5,
131
+ label="Output",
132
+ )
133
+ ],
134
+ title="Fine-tuned version of Vicuna Model",
135
+ description="This model is a fine-tuned version of the Vicuna model for sentiment analysis. https://github.com/hennypurwadi/Vicuna_finetune_sentiment_analysis \
136
+ Base model is https://huggingface.co/TheBloke/vicuna-7B-1.1-HF \
137
+ It is fine-tuned and trained on a dataset to classify text as one of these six different emotions: anger, fear, joy, love, sadness, or surprise. \
138
+ The model was trained and tested on a labeled dataset from Kaggle (https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp)",
139
+ )
140
+
141
+ g.queue(concurrency_count=1)
142
+ g.launch()
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/huggyllama_llama-13b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_position_embeddings": 2048,
13
+ "max_sequence_length": 2048,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 40,
17
+ "pad_token_id": 0,
18
+ "rms_norm_eps": 1e-06,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.28.1",
22
+ "use_cache": true,
23
+ "vocab_size": 32001
24
+ }
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accelerate
2
+ torch
3
+ bitsandbytes
4
+ transformers
5
+ appdirs
6
+ loralib
7
+ black
8
+ black[jupyter]
9
+ datasets
10
+ fire
11
+ git+https://github.com/huggingface/peft.git
12
+ git+https://github.com/huggingface/transformers.git
13
+ transformers>=4.28.0
14
+ sentencepiece
15
+ gradio