Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,22 @@ from transformers import AutoTokenizer
|
|
4 |
import torch
|
5 |
import os
|
6 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
### --- Audio/Video to txt ---###
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
pipe = pipeline("automatic-speech-recognition",
|
10 |
model="openai/whisper-base.en",
|
11 |
chunk_length_s=30, device=device)
|
12 |
|
|
|
13 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=device)
|
14 |
|
15 |
|
@@ -40,18 +50,6 @@ def summary(text):
|
|
40 |
summ = summarizer(chunks,max_length = 100)
|
41 |
|
42 |
return summ
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
token = AutoTokenizer.from_pretrained('distilroberta-base')
|
49 |
-
|
50 |
-
inf_session = onnxruntime.InferenceSession('classifier1-quantized.onnx')
|
51 |
-
input_name = inf_session.get_inputs()[0].name
|
52 |
-
output_name = inf_session.get_outputs()[0].name
|
53 |
-
|
54 |
-
classes = ['Art', 'Astrology', 'Biology', 'Chemistry', 'Economics', 'History', 'Literature', 'Philosophy', 'Physics', 'Politics', 'Psychology', 'Sociology']
|
55 |
|
56 |
def classify(vid):
|
57 |
full_text = video_identity(vid)
|
@@ -64,9 +62,9 @@ def classify(vid):
|
|
64 |
probs = torch.sigmoid(logits)[0]
|
65 |
return full_text, sum, dict(zip(classes,map(float,probs)))
|
66 |
|
67 |
-
|
68 |
iface = gr.Interface(fn=classify,
|
69 |
-
inputs=gr.inputs.Audio(source="upload", type="filepath"),
|
70 |
outputs = ['text','text',gr.outputs.Label(num_top_classes=3)])
|
71 |
iface.launch(inline=False)
|
72 |
|
|
|
4 |
import torch
|
5 |
import os
|
6 |
from transformers import pipeline
|
7 |
+
|
8 |
+
token = AutoTokenizer.from_pretrained('distilroberta-base')
|
9 |
+
|
10 |
+
inf_session = onnxruntime.InferenceSession('classifier1-quantized.onnx')
|
11 |
+
input_name = inf_session.get_inputs()[0].name
|
12 |
+
output_name = inf_session.get_outputs()[0].name
|
13 |
+
|
14 |
+
classes = ['Art', 'Astrology', 'Biology', 'Chemistry', 'Economics', 'History', 'Literature', 'Philosophy', 'Physics', 'Politics', 'Psychology', 'Sociology']
|
15 |
+
|
16 |
### --- Audio/Video to txt ---###
|
17 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
18 |
pipe = pipeline("automatic-speech-recognition",
|
19 |
model="openai/whisper-base.en",
|
20 |
chunk_length_s=30, device=device)
|
21 |
|
22 |
+
### --- Text Summary --- ###
|
23 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=device)
|
24 |
|
25 |
|
|
|
50 |
summ = summarizer(chunks,max_length = 100)
|
51 |
|
52 |
return summ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def classify(vid):
|
55 |
full_text = video_identity(vid)
|
|
|
62 |
probs = torch.sigmoid(logits)[0]
|
63 |
return full_text, sum, dict(zip(classes,map(float,probs)))
|
64 |
|
65 |
+
|
66 |
iface = gr.Interface(fn=classify,
|
67 |
+
inputs=gr.inputs.Audio(source="upload", type="filepath",label="Model Card"),
|
68 |
outputs = ['text','text',gr.outputs.Label(num_top_classes=3)])
|
69 |
iface.launch(inline=False)
|
70 |
|