htr_demo / tabs /stepwise_htr_tool.py
Gabriel's picture
små fix
6a5ac94
raw
history blame
16.6 kB
import os
import shutil
from difflib import Differ
import evaluate
import gradio as gr
from helper.examples.examples import DemoImages
from helper.utils import TrafficDataHandler
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader
model_loader = SingletonModelLoader()
custom_track = CustomTrack(model_loader)
images_for_demo = DemoImages()
cer_metric = evaluate.load("cer")
with gr.Blocks() as stepwise_htr_tool_tab:
with gr.Tabs():
with gr.Tab("1. Region segmentation"):
with gr.Row():
with gr.Column(scale=1):
vis_data_folder_placeholder = gr.Markdown(visible=False)
name_files_placeholder = gr.Markdown(visible=False)
with gr.Group():
input_region_image = gr.Image(
label="Image to region segment",
# type="numpy",
tool="editor",
height=500,
)
with gr.Accordion("Settings", open=False):
with gr.Group():
reg_pred_score_threshold_slider = gr.Slider(
minimum=0.4,
maximum=1,
value=0.5,
step=0.05,
label="P-threshold",
info="""Filter the confidence score for a prediction score to be considered""",
)
reg_containments_threshold_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.05,
label="C-threshold",
info="""The minimum required overlap or similarity
for a detected region or object to be considered valid""",
)
region_segment_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/rtm_region"],
value="Riksarkivet/rtm_region",
label="Region segmentation model",
info="More models will be added",
)
with gr.Row():
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")
region_segment_button = gr.Button(
"Run",
variant="primary",
elem_id="region_segment_button",
)
region_segment_button_var = gr.State(value="region_segment_button")
with gr.Column(scale=2):
with gr.Box():
with gr.Row():
with gr.Column(scale=2):
gr.Examples(
examples=images_for_demo.examples_list,
inputs=[name_files_placeholder, input_region_image],
label="Example images",
examples_per_page=5,
)
with gr.Column(scale=3):
output_region_image = gr.Image(label="Segmented regions", type="numpy", height=600)
##############################################
with gr.Tab("2. Line segmentation"):
image_placeholder_lines = gr.Image(
label="Segmented lines",
# type="numpy",
interactive="False",
visible=True,
height=600,
)
with gr.Row(visible=False) as control_line_segment:
with gr.Column(scale=2):
with gr.Group():
with gr.Box():
regions_cropped_gallery = gr.Gallery(
label="Segmented regions",
elem_id="gallery",
columns=[2],
rows=[2],
# object_fit="contain",
height=450,
preview=True,
container=False,
)
input_region_from_gallery = gr.Image(
label="Region segmentation to line segment", interactive="False", visible=False, height=400
)
with gr.Row():
with gr.Accordion("Settings", open=False):
with gr.Row():
line_pred_score_threshold_slider = gr.Slider(
minimum=0.3,
maximum=1,
value=0.4,
step=0.05,
label="Pred_score threshold",
info="""Filter the confidence score for a prediction score to be considered""",
)
line_containments_threshold_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.05,
label="Containments threshold",
info="""The minimum required overlap or similarity
for a detected region or object to be considered valid""",
)
with gr.Row(equal_height=False):
line_segment_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/rtmdet_lines"],
value="Riksarkivet/rtmdet_lines",
label="Line segment model",
info="More models will be added",
)
with gr.Row():
# placeholder_line_button = gr.Button(
# "",
# variant="secondary",
# scale=1,
# )
gr.Markdown(" ")
line_segment_button = gr.Button(
"Run",
variant="primary",
# elem_id="center_button",
scale=1,
)
with gr.Column(scale=3):
output_line_from_region = gr.Image(
label="Segmented lines", type="numpy", interactive="False", height=600
)
###############################################
with gr.Tab("3. Text recognition"):
image_placeholder_htr = gr.Image(
label="Transcribed lines",
# type="numpy",
interactive="False",
visible=True,
height=600,
)
with gr.Row(visible=False) as control_htr:
inputs_lines_to_transcribe = gr.Variable()
with gr.Column(scale=2):
with gr.Group():
image_inputs_lines_to_transcribe = gr.Image(
label="Transcribed lines", type="numpy", interactive="False", visible=False, height=470
)
with gr.Row():
with gr.Accordion("Settings", open=False):
transcriber_model = gr.Dropdown(
choices=["Riksarkivet/satrn_htr", "microsoft/trocr-base-handwritten"],
value="Riksarkivet/satrn_htr",
label="Text recognition model",
info="More models will be added",
)
gr.Slider(
value=0.6,
minimum=0.5,
maximum=1,
label="HTR threshold",
info="Prediction score threshold for transcribed lines",
scale=1,
)
with gr.Row():
copy_textarea = gr.Button("Copy text", variant="secondary", visible=True, scale=1)
transcribe_button = gr.Button("Run", variant="primary", visible=True, scale=1)
with gr.Column(scale=3):
with gr.Row():
transcribed_text = gr.Textbox(
label="Transcribed text",
info="Transcribed text is being streamed back from the Text recognition model",
lines=26,
value="",
show_copy_button=True,
elem_id="textarea_stepwise_3",
)
#####################################
with gr.Tab("4. Explore results"):
image_placeholder_explore_results = gr.Image(
label="Cropped transcribed lines",
# type="numpy",
interactive="False",
visible=True,
height=600,
)
with gr.Row(visible=False, equal_height=False) as control_results_transcribe:
with gr.Column(scale=1, visible=True):
with gr.Group():
with gr.Box():
temp_gallery_input = gr.Variable()
gallery_inputs_lines_to_transcribe = gr.Gallery(
label="Cropped transcribed lines",
elem_id="gallery_lines",
columns=[3],
rows=[3],
# object_fit="contain",
height=150,
preview=True,
container=False,
)
with gr.Row():
dataframe_text_index = gr.Textbox(
label="Text from DataFrame selection",
placeholder="Select row from the DataFrame.",
interactive=False,
)
with gr.Row():
gt_text_index = gr.Textbox(
label="Ground Truth",
placeholder="Provide the ground truth, if available.",
interactive=True,
)
with gr.Row():
diff_token_output = gr.HighlightedText(
label="Text diff",
combine_adjacent=True,
show_legend=True,
color_map={"+": "red", "-": "green"},
)
with gr.Row(equal_height=False):
cer_output = gr.Textbox(label="Character Error Rate")
gr.Markdown("")
calc_cer_button = gr.Button("Calculate CER", variant="primary", visible=True)
with gr.Column(scale=1, visible=True):
mapping_dict = gr.Variable()
transcribed_text_df_finish = gr.Dataframe(
headers=["Transcribed text", "Prediction score"],
max_rows=14,
col_count=(2, "fixed"),
wrap=True,
interactive=False,
overflow_row_behaviour="paginate",
height=600,
)
# custom track
def diff_texts(text1, text2):
d = Differ()
return [(token[2:], token[0] if token[0] != " " else None) for token in d.compare(text1, text2)]
def compute_cer(dataframe_text_index, gt_text_index):
if gt_text_index is not None and gt_text_index.strip() != "":
return round(cer_metric.compute(predictions=[dataframe_text_index], references=[gt_text_index]), 4)
else:
return "Ground truth not provided"
calc_cer_button.click(compute_cer, inputs=[dataframe_text_index, gt_text_index], outputs=cer_output)
calc_cer_button.click(diff_texts, inputs=[dataframe_text_index, gt_text_index], outputs=[diff_token_output])
region_segment_button.click(
custom_track.region_segment,
inputs=[input_region_image, reg_pred_score_threshold_slider, reg_containments_threshold_slider],
outputs=[output_region_image, regions_cropped_gallery, image_placeholder_lines, control_line_segment],
)
regions_cropped_gallery.select(
custom_track.get_select_index_image, regions_cropped_gallery, input_region_from_gallery
)
transcribed_text_df_finish.select(
fn=custom_track.get_select_index_df,
inputs=[transcribed_text_df_finish, mapping_dict],
outputs=[gallery_inputs_lines_to_transcribe, dataframe_text_index],
)
line_segment_button.click(
custom_track.line_segment,
inputs=[input_region_from_gallery, line_pred_score_threshold_slider, line_containments_threshold_slider],
outputs=[
output_line_from_region,
image_inputs_lines_to_transcribe,
inputs_lines_to_transcribe,
gallery_inputs_lines_to_transcribe,
temp_gallery_input,
# Hide
transcribe_button,
image_inputs_lines_to_transcribe,
image_placeholder_htr,
control_htr,
],
)
copy_textarea.click(fn=None, _js="""document.querySelector("#textarea_stepwise_3 > label > button").click()""")
transcribe_button.click(
custom_track.transcribe_text,
inputs=[inputs_lines_to_transcribe],
outputs=[
transcribed_text,
transcribed_text_df_finish,
mapping_dict,
# Hide
control_results_transcribe,
image_placeholder_explore_results,
],
)
clear_button.click(
lambda: (
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
None,
None,
None,
gr.update(visible=False),
None,
None,
None,
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
None,
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
),
inputs=[],
outputs=[
vis_data_folder_placeholder,
input_region_image,
regions_cropped_gallery,
input_region_from_gallery,
control_line_segment,
output_line_from_region,
inputs_lines_to_transcribe,
transcribed_text,
control_htr,
inputs_lines_to_transcribe,
image_placeholder_htr,
output_region_image,
image_inputs_lines_to_transcribe,
control_results_transcribe,
image_placeholder_explore_results,
image_placeholder_lines,
],
)
SECRET_KEY = os.environ.get("AM_I_IN_A_DOCKER_CONTAINER", False)
if SECRET_KEY:
region_segment_button.click(fn=TrafficDataHandler.store_metric_data, inputs=region_segment_button_var)