EditGuard / train.py
Ricoooo's picture
Add local files to repository
8da8f47
raw
history blame
12.1 kB
import os
import math
import argparse
import random
import logging
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from data.data_sampler import DistIterSampler
import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model
def init_dist(backend='nccl', **kwargs):
''' initialization for distributed training'''
# if mp.get_start_method(allow_none=True) is None:
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn')
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(backend=backend, **kwargs)
def cal_pnsr(sr_img, gt_img):
# calculate PSNR
gt_img = gt_img / 255.
sr_img = sr_img / 255.
psnr = util.calculate_psnr(sr_img * 255, gt_img * 255)
return psnr
def main():
# options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YMAL file.') # config 文件
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
# distributed training settings
if args.launcher == 'none': # disabled distributed training
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
else:
opt['dist'] = True
init_dist()
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
# loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
# resume_state = torch.load(opt['path']['resume_state'],
# map_location=lambda storage, loc: storage.cuda(device_id), strict=False)
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
# mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name'])
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
# random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
#### create train and val dataloader
dataset_ratio = 200 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = create_dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
if opt['dist']:
train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
else:
train_sampler = None
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
if rank <= 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
elif phase == 'val':
val_set = create_dataset(dataset_opt)
val_loader = create_dataloader(val_set, dataset_opt, opt, None)
if rank <= 0:
logger.info('Number of val images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(val_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
# create model
model = create_model(opt)
# resume training
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state) # handle optimizers and schedulers
else:
current_step = 0
start_epoch = 0
# training
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
for epoch in range(start_epoch, total_epochs + 1):
if opt['dist']:
train_sampler.set_epoch(epoch)
for _, train_data in enumerate(train_loader):
current_step += 1
if current_step > total_iters:
break
# training
model.feed_data(train_data)
model.optimize_parameters(current_step)
# update learning rate
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
# log
if current_step % opt['logger']['print_freq'] == 0:
logs = model.get_current_log()
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(
epoch, current_step, model.get_current_learning_rate())
for k, v in logs.items():
message += '{:s}: {:.4e} '.format(k, v)
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
if rank <= 0:
tb_logger.add_scalar(k, v, current_step)
if rank <= 0:
logger.info(message)
# validation
if current_step % opt['train']['val_freq'] == 0 and rank <= 0:
avg_psnr = 0.0
avg_psnr_h = [0.0]*opt['num_image']
avg_psnr_lr = 0.0
avg_biterr = 0.0
idx = 0
for image_id, val_data in enumerate(val_loader):
img_dir = os.path.join(opt['path']['val_images'])
util.mkdir(img_dir)
model.feed_data(val_data)
model.test(image_id)
visuals = model.get_current_visuals()
t_step = visuals['SR'].shape[0]
idx += t_step
n = len(visuals['SR_h'])
avg_biterr += util.decoded_message_error_rate_batch(visuals['recmessage'][0], visuals['message'][0])
for i in range(t_step):
sr_img = util.tensor2img(visuals['SR'][i]) # uint8
sr_img_h = []
for j in range(n):
sr_img_h.append(util.tensor2img(visuals['SR_h'][j][i])) # uint8
gt_img = util.tensor2img(visuals['GT'][i]) # uint8
lr_img = util.tensor2img(visuals['LR'][i])
lrgt_img = []
for j in range(n):
lrgt_img.append(util.tensor2img(visuals['LR_ref'][j][i]))
# Save SR images for reference
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'SR'))
util.save_img(sr_img, save_img_path)
for j in range(n):
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:d}_{:s}.png'.format(image_id, i, j, 'SR_h'))
util.save_img(sr_img_h[j], save_img_path)
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'GT'))
util.save_img(gt_img, save_img_path)
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'LR'))
util.save_img(lr_img, save_img_path)
for j in range(n):
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:d}_{:s}.png'.format(image_id, i, j, 'LRGT'))
util.save_img(lrgt_img[j], save_img_path)
psnr = cal_pnsr(sr_img, gt_img)
psnr_h = []
for j in range(n):
psnr_h.append(cal_pnsr(sr_img_h[j], lrgt_img[j]))
psnr_lr = cal_pnsr(lr_img, gt_img)
avg_psnr += psnr
for j in range(n):
avg_psnr_h[j] += psnr_h[j]
avg_psnr_lr += psnr_lr
avg_psnr = avg_psnr / idx
avg_psnr_h = [psnr / idx for psnr in avg_psnr_h]
avg_psnr_lr = avg_psnr_lr / idx
avg_biterr = avg_biterr / idx
# log
res_psnr_h = ''
for p in avg_psnr_h:
res_psnr_h+=('_{:.4e}'.format(p))
logger.info('# Validation # PSNR_Cover: {:.4e}, PSNR_Secret: {:s}, PSNR_Stego: {:.4e}, Bit_acc: {: .4e}'.format(avg_psnr, res_psnr_h, avg_psnr_lr, avg_biterr))
logger_val = logging.getLogger('val') # validation logger
logger_val.info('<epoch:{:3d}, iter:{:8,d}> PSNR_Cover: {:.4e}, PSNR_Secret: {:s}, PSNR_Stego: {:.4e}, Bit_acc: {: .4e}'.format(
epoch, current_step, avg_psnr, res_psnr_h, avg_psnr_lr, avg_biterr))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr', avg_psnr, current_step)
# save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
if rank <= 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
if rank <= 0:
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
if __name__ == '__main__':
main()