|
import os |
|
import math |
|
import argparse |
|
import random |
|
import logging |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
from data.data_sampler import DistIterSampler |
|
|
|
import options.options as option |
|
from utils import util |
|
from data import create_dataloader, create_dataset |
|
from models import create_model |
|
|
|
|
|
def init_dist(backend='nccl', **kwargs): |
|
''' initialization for distributed training''' |
|
|
|
if mp.get_start_method(allow_none=True) != 'spawn': |
|
mp.set_start_method('spawn') |
|
rank = int(os.environ['RANK']) |
|
num_gpus = torch.cuda.device_count() |
|
torch.cuda.set_device(rank % num_gpus) |
|
dist.init_process_group(backend=backend, **kwargs) |
|
|
|
def cal_pnsr(sr_img, gt_img): |
|
|
|
gt_img = gt_img / 255. |
|
sr_img = sr_img / 255. |
|
psnr = util.calculate_psnr(sr_img * 255, gt_img * 255) |
|
|
|
return psnr |
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-opt', type=str, help='Path to option YMAL file.') |
|
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
args = parser.parse_args() |
|
opt = option.parse(args.opt, is_train=True) |
|
|
|
|
|
if args.launcher == 'none': |
|
opt['dist'] = False |
|
rank = -1 |
|
print('Disabled distributed training.') |
|
else: |
|
opt['dist'] = True |
|
init_dist() |
|
world_size = torch.distributed.get_world_size() |
|
rank = torch.distributed.get_rank() |
|
|
|
|
|
if opt['path'].get('resume_state', None): |
|
|
|
device_id = torch.cuda.current_device() |
|
resume_state = torch.load(opt['path']['resume_state'], |
|
map_location=lambda storage, loc: storage.cuda(device_id)) |
|
|
|
|
|
option.check_resume(opt, resume_state['iter']) |
|
else: |
|
resume_state = None |
|
|
|
|
|
if rank <= 0: |
|
if resume_state is None: |
|
util.mkdir_and_rename( |
|
opt['path']['experiments_root']) |
|
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' |
|
and 'pretrain_model' not in key and 'resume' not in key)) |
|
|
|
|
|
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO, |
|
screen=True, tofile=True) |
|
util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO, |
|
screen=True, tofile=True) |
|
logger = logging.getLogger('base') |
|
logger.info(option.dict2str(opt)) |
|
|
|
if opt['use_tb_logger'] and 'debug' not in opt['name']: |
|
version = float(torch.__version__[0:3]) |
|
if version >= 1.1: |
|
from torch.utils.tensorboard import SummaryWriter |
|
else: |
|
logger.info( |
|
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version)) |
|
from tensorboardX import SummaryWriter |
|
tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name']) |
|
else: |
|
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True) |
|
logger = logging.getLogger('base') |
|
|
|
|
|
opt = option.dict_to_nonedict(opt) |
|
|
|
|
|
seed = opt['train']['manual_seed'] |
|
if seed is None: |
|
seed = random.randint(1, 10000) |
|
if rank <= 0: |
|
logger.info('Random seed: {}'.format(seed)) |
|
util.set_random_seed(seed) |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
|
|
dataset_ratio = 200 |
|
for phase, dataset_opt in opt['datasets'].items(): |
|
if phase == 'train': |
|
train_set = create_dataset(dataset_opt) |
|
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size'])) |
|
total_iters = int(opt['train']['niter']) |
|
total_epochs = int(math.ceil(total_iters / train_size)) |
|
if opt['dist']: |
|
train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio) |
|
total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio))) |
|
else: |
|
train_sampler = None |
|
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler) |
|
if rank <= 0: |
|
logger.info('Number of train images: {:,d}, iters: {:,d}'.format( |
|
len(train_set), train_size)) |
|
logger.info('Total epochs needed: {:d} for iters {:,d}'.format( |
|
total_epochs, total_iters)) |
|
elif phase == 'val': |
|
val_set = create_dataset(dataset_opt) |
|
val_loader = create_dataloader(val_set, dataset_opt, opt, None) |
|
if rank <= 0: |
|
logger.info('Number of val images in [{:s}]: {:d}'.format( |
|
dataset_opt['name'], len(val_set))) |
|
else: |
|
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase)) |
|
assert train_loader is not None |
|
|
|
|
|
model = create_model(opt) |
|
|
|
if resume_state: |
|
logger.info('Resuming training from epoch: {}, iter: {}.'.format( |
|
resume_state['epoch'], resume_state['iter'])) |
|
|
|
start_epoch = resume_state['epoch'] |
|
current_step = resume_state['iter'] |
|
model.resume_training(resume_state) |
|
else: |
|
current_step = 0 |
|
start_epoch = 0 |
|
|
|
|
|
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step)) |
|
for epoch in range(start_epoch, total_epochs + 1): |
|
if opt['dist']: |
|
train_sampler.set_epoch(epoch) |
|
for _, train_data in enumerate(train_loader): |
|
current_step += 1 |
|
if current_step > total_iters: |
|
break |
|
|
|
model.feed_data(train_data) |
|
model.optimize_parameters(current_step) |
|
|
|
|
|
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter']) |
|
|
|
|
|
if current_step % opt['logger']['print_freq'] == 0: |
|
logs = model.get_current_log() |
|
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( |
|
epoch, current_step, model.get_current_learning_rate()) |
|
for k, v in logs.items(): |
|
message += '{:s}: {:.4e} '.format(k, v) |
|
|
|
if opt['use_tb_logger'] and 'debug' not in opt['name']: |
|
if rank <= 0: |
|
tb_logger.add_scalar(k, v, current_step) |
|
if rank <= 0: |
|
logger.info(message) |
|
|
|
|
|
if current_step % opt['train']['val_freq'] == 0 and rank <= 0: |
|
avg_psnr = 0.0 |
|
avg_psnr_h = [0.0]*opt['num_image'] |
|
avg_psnr_lr = 0.0 |
|
avg_biterr = 0.0 |
|
idx = 0 |
|
for image_id, val_data in enumerate(val_loader): |
|
img_dir = os.path.join(opt['path']['val_images']) |
|
util.mkdir(img_dir) |
|
|
|
model.feed_data(val_data) |
|
model.test(image_id) |
|
|
|
visuals = model.get_current_visuals() |
|
|
|
t_step = visuals['SR'].shape[0] |
|
idx += t_step |
|
n = len(visuals['SR_h']) |
|
|
|
avg_biterr += util.decoded_message_error_rate_batch(visuals['recmessage'][0], visuals['message'][0]) |
|
|
|
for i in range(t_step): |
|
|
|
sr_img = util.tensor2img(visuals['SR'][i]) |
|
sr_img_h = [] |
|
for j in range(n): |
|
sr_img_h.append(util.tensor2img(visuals['SR_h'][j][i])) |
|
gt_img = util.tensor2img(visuals['GT'][i]) |
|
lr_img = util.tensor2img(visuals['LR'][i]) |
|
lrgt_img = [] |
|
for j in range(n): |
|
lrgt_img.append(util.tensor2img(visuals['LR_ref'][j][i])) |
|
|
|
|
|
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'SR')) |
|
util.save_img(sr_img, save_img_path) |
|
|
|
for j in range(n): |
|
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:d}_{:s}.png'.format(image_id, i, j, 'SR_h')) |
|
util.save_img(sr_img_h[j], save_img_path) |
|
|
|
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'GT')) |
|
util.save_img(gt_img, save_img_path) |
|
|
|
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'LR')) |
|
util.save_img(lr_img, save_img_path) |
|
|
|
for j in range(n): |
|
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:d}_{:s}.png'.format(image_id, i, j, 'LRGT')) |
|
util.save_img(lrgt_img[j], save_img_path) |
|
|
|
psnr = cal_pnsr(sr_img, gt_img) |
|
psnr_h = [] |
|
for j in range(n): |
|
psnr_h.append(cal_pnsr(sr_img_h[j], lrgt_img[j])) |
|
psnr_lr = cal_pnsr(lr_img, gt_img) |
|
|
|
avg_psnr += psnr |
|
for j in range(n): |
|
avg_psnr_h[j] += psnr_h[j] |
|
avg_psnr_lr += psnr_lr |
|
|
|
avg_psnr = avg_psnr / idx |
|
avg_psnr_h = [psnr / idx for psnr in avg_psnr_h] |
|
avg_psnr_lr = avg_psnr_lr / idx |
|
avg_biterr = avg_biterr / idx |
|
|
|
|
|
res_psnr_h = '' |
|
for p in avg_psnr_h: |
|
res_psnr_h+=('_{:.4e}'.format(p)) |
|
|
|
logger.info('# Validation # PSNR_Cover: {:.4e}, PSNR_Secret: {:s}, PSNR_Stego: {:.4e}, Bit_acc: {: .4e}'.format(avg_psnr, res_psnr_h, avg_psnr_lr, avg_biterr)) |
|
logger_val = logging.getLogger('val') |
|
logger_val.info('<epoch:{:3d}, iter:{:8,d}> PSNR_Cover: {:.4e}, PSNR_Secret: {:s}, PSNR_Stego: {:.4e}, Bit_acc: {: .4e}'.format( |
|
epoch, current_step, avg_psnr, res_psnr_h, avg_psnr_lr, avg_biterr)) |
|
|
|
if opt['use_tb_logger'] and 'debug' not in opt['name']: |
|
tb_logger.add_scalar('psnr', avg_psnr, current_step) |
|
|
|
|
|
if current_step % opt['logger']['save_checkpoint_freq'] == 0: |
|
if rank <= 0: |
|
logger.info('Saving models and training states.') |
|
model.save(current_step) |
|
model.save_training_state(epoch, current_step) |
|
|
|
if rank <= 0: |
|
logger.info('Saving the final model.') |
|
model.save('latest') |
|
logger.info('End of training.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|