Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,133 +1,44 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import json
|
3 |
-
import requests
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torchvision
|
7 |
-
import torchvision.models as models
|
8 |
-
|
9 |
-
from torchvision import datasets, transforms
|
10 |
-
from torchvision.models import mobilenet_v2
|
11 |
-
from torch import nn, optim
|
12 |
-
from torch.utils.data import DataLoader, TensorDataset
|
13 |
-
|
14 |
-
from tqdm.auto import tqdm
|
15 |
-
from jcopdl.callback import Callback, set_config
|
16 |
-
|
17 |
-
import pandas as pd
|
18 |
-
import numpy as np
|
19 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
20 |
-
device
|
21 |
-
|
22 |
-
|
23 |
-
import openai
|
24 |
import os
|
25 |
-
import
|
26 |
-
|
27 |
-
|
28 |
-
from PIL import Image
|
29 |
-
import io
|
30 |
-
import cv2
|
31 |
-
|
32 |
-
torch.manual_seed(0)
|
33 |
-
|
34 |
-
class CustomMobileNetv2(nn.Module):
|
35 |
-
def __init__(self, output_size):
|
36 |
-
super().__init__()
|
37 |
-
self.mnet = mobilenet_v2(pretrained=True)
|
38 |
-
self.freeze()
|
39 |
-
|
40 |
-
self.mnet.classifier = nn.Sequential(
|
41 |
-
nn.Linear(1280, output_size),
|
42 |
-
nn.LogSoftmax()
|
43 |
-
)
|
44 |
-
|
45 |
-
def forward(self, x):
|
46 |
-
return self.mnet(x)
|
47 |
-
|
48 |
-
def freeze(self):
|
49 |
-
for param in self.mnet.parameters():
|
50 |
-
param.requires_grad = False
|
51 |
-
|
52 |
-
def unfreeze(self):
|
53 |
-
for param in self.mnet.parameters():
|
54 |
-
param.requires_grad = True
|
55 |
-
|
56 |
-
kue_lokal_model = torch.load('rickyig_mobilenetv2_kue_lokal_classifier_entire_model.pth', map_location=torch.device('cpu'))
|
57 |
-
|
58 |
-
dict_for_inference = {0: 'kue dadar gulung',
|
59 |
-
1: 'kue kastengel',
|
60 |
-
2: 'kue klepon',
|
61 |
-
3: 'kue lapis',
|
62 |
-
4: 'kue lumpur',
|
63 |
-
5: 'kue putri salju',
|
64 |
-
6: 'kue risoles',
|
65 |
-
7: 'kue serabi'}
|
66 |
-
|
67 |
-
def get_completion(prompt, model="gpt-3.5-turbo"):
|
68 |
-
messages = [{"role": "user", "content": prompt}]
|
69 |
-
response = openai.ChatCompletion.create(
|
70 |
-
model=model,
|
71 |
-
messages=messages,
|
72 |
-
temperature=0,
|
73 |
-
)
|
74 |
-
return response.choices[0].message["content"]
|
75 |
-
|
76 |
-
def get_response(classify_result):
|
77 |
-
prompt = "Apa itu {} dan sebutkan resep dari {}.".format(classify_result, classify_result)
|
78 |
-
response = get_completion(prompt)
|
79 |
-
return response
|
80 |
-
|
81 |
-
def classify_image(input_image):
|
82 |
-
|
83 |
-
kue_lokal_model.eval()
|
84 |
-
|
85 |
-
image_for_testing = input_image
|
86 |
-
img = Image.open(image_for_testing)
|
87 |
-
|
88 |
-
transform = transforms.Compose([
|
89 |
-
transforms.Resize((224, 224)),
|
90 |
-
transforms.ToTensor(),
|
91 |
-
])
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
probs = torch.nn.functional.softmax(output, dim=1)
|
100 |
-
conf, predicted_class = torch.max(probs, 1)
|
101 |
|
102 |
-
|
103 |
-
output_dict = {"predicted_label": class_to_label[predicted_class.item()], "probability": conf.item()}
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
output_bentuk_text = "Hasil Klasifikasi Gambar \nKue : {} \nProbability: {:.2f}%".format(class_to_label[predicted_class.item()], conf.item()*100)
|
108 |
-
output_response = get_response(class_to_label[predicted_class.item()])
|
109 |
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
output_json = gr.JSON(label="Output (JSON)")
|
115 |
-
output_bentuk_text = gr.Textbox(label="Hasil Output")
|
116 |
-
output_response = gr.Textbox(label="Resep Kue")
|
117 |
-
example_input_image = "3.jpg"
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
],
|
127 |
-
description="Unggah foto kue lokal dan dapatkan hasil klasifikasi gambar beserta resep kue.<br>Kue yang tersedia: kue dadar gulung, kue kastengel, kue klepon, kue lapis, kue lumpur, kue putri salju, kue risoles, kue serabi.",
|
128 |
-
)
|
129 |
|
130 |
-
|
131 |
-
interface.launch(share=True, debug=True)
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import openai
|
3 |
+
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
import gradio as gr
|
6 |
+
from langchain import OpenAI, PromptTemplate
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
from langchain.chains.summarize import load_summarize_chain
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
|
12 |
+
sys.path.append('../..')
|
13 |
|
14 |
+
from dotenv import load_dotenv, find_dotenv
|
15 |
+
_ = load_dotenv(find_dotenv()) # read local .env file
|
|
|
|
|
16 |
|
17 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
|
|
18 |
|
19 |
+
llm = OpenAI(temperature=0)
|
20 |
+
text_splitter = CharacterTextSplitter()
|
|
|
|
|
21 |
|
22 |
+
def summarize_pdf(pdf_file):
|
23 |
+
pdf_file = pdf_file.name
|
24 |
+
loader = PyPDFLoader(pdf_file)
|
25 |
+
docs = loader.load_and_split()
|
26 |
+
chain = load_summarize_chain(llm, chain_type="map_reduce")
|
27 |
+
summary = chain.run(docs)
|
28 |
+
return summary
|
29 |
|
30 |
+
def main():
|
31 |
+
output_summary = gr.Textbox(label="Summary")
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=summarize_pdf,
|
35 |
+
inputs=["file"],
|
36 |
+
outputs=[output_summary],
|
37 |
+
title="PDF Summarizer",
|
38 |
+
description="Langchain based summarization application that's given a PDF file, then create a summary of the text content. <br> Enter the PDF file and get its summary.",
|
39 |
+
)
|
|
|
|
|
|
|
40 |
|
41 |
+
iface.launch(share=True)
|
|
|
42 |
|
43 |
+
if __name__ == "__main__":
|
44 |
+
main()
|