|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import spaces |
|
import gradio as gr |
|
import gc |
|
|
|
import numpy as np |
|
import os |
|
import torch |
|
|
|
from video_depth_anything.video_depth import VideoDepthAnything |
|
from utils.dc_utils import read_video_frames, save_video |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
examples = [ |
|
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280], |
|
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280], |
|
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280], |
|
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280], |
|
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280], |
|
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280], |
|
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280], |
|
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280], |
|
['assets/example_videos/obj_1.mp4', -1, -1, 1280], |
|
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280], |
|
] |
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
model_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
} |
|
|
|
encoder2name = { |
|
'vits': 'Small', |
|
'vitl': 'Large', |
|
} |
|
|
|
encoder='vitl' |
|
model_name = encoder2name[encoder] |
|
|
|
video_depth_anything = VideoDepthAnything(**model_configs[encoder]) |
|
filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}", filename=f"video_depth_anything_{encoder}.pth", repo_type="model") |
|
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu')) |
|
video_depth_anything = video_depth_anything.to(DEVICE).eval() |
|
|
|
|
|
title = "# Video Depth Anything" |
|
description = """Official demo for **Video Depth Anything**. |
|
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details.""" |
|
|
|
|
|
@spaces.GPU(duration=240) |
|
def infer_video_depth( |
|
input_video: str, |
|
max_len: int = -1, |
|
target_fps: int = -1, |
|
max_res: int = 1280, |
|
grayscale: bool = False, |
|
output_dir: str = './outputs', |
|
input_size: int = 518, |
|
): |
|
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res) |
|
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE) |
|
|
|
video_name = os.path.basename(input_video) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_src.mp4') |
|
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_vis.mp4') |
|
save_video(frames, processed_video_path, fps=fps) |
|
save_video(depths, depth_vis_path, fps=fps, is_depths=True, grayscale=grayscale) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
return [processed_video_path, depth_vis_path] |
|
|
|
|
|
def construct_demo(): |
|
with gr.Blocks(analytics_enabled=False) as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
gr.Markdown("### If you find this work useful, please help ⭐ the [\[Github Repo\]](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!") |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=1): |
|
input_video = gr.Video(label="Input Video") |
|
|
|
|
|
with gr.Column(scale=2): |
|
with gr.Row(equal_height=True): |
|
processed_video = gr.Video( |
|
label="Preprocessed video", |
|
interactive=False, |
|
autoplay=True, |
|
loop=True, |
|
show_share_button=True, |
|
scale=5, |
|
) |
|
depth_vis_video = gr.Video( |
|
label="Generated Depth Video", |
|
interactive=False, |
|
autoplay=True, |
|
loop=True, |
|
show_share_button=True, |
|
scale=5, |
|
) |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=1): |
|
with gr.Row(equal_height=False): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
max_len = gr.Slider( |
|
label="max process length", |
|
minimum=-1, |
|
maximum=1000, |
|
value=500, |
|
step=1, |
|
) |
|
target_fps = gr.Slider( |
|
label="target FPS", |
|
minimum=-1, |
|
maximum=30, |
|
value=15, |
|
step=1, |
|
) |
|
max_res = gr.Slider( |
|
label="max side resolution", |
|
minimum=480, |
|
maximum=1920, |
|
value=1280, |
|
step=1, |
|
) |
|
grayscale = gr.Checkbox( |
|
label="grayscale", |
|
value=False, |
|
) |
|
generate_btn = gr.Button("Generate") |
|
with gr.Column(scale=2): |
|
pass |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[ |
|
input_video, |
|
max_len, |
|
target_fps, |
|
max_res |
|
], |
|
outputs=[processed_video, depth_vis_video], |
|
fn=infer_video_depth, |
|
cache_examples="lazy", |
|
) |
|
|
|
generate_btn.click( |
|
fn=infer_video_depth, |
|
inputs=[ |
|
input_video, |
|
max_len, |
|
target_fps, |
|
max_res, |
|
grayscale |
|
], |
|
outputs=[processed_video, depth_vis_video], |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = construct_demo() |
|
demo.queue() |
|
demo.launch(share=True) |