Trim / app.py
Rhueue's picture
Update app.py
cb6c13a
import streamlit as st
import soundfile as sf
import io
import numpy as np
import pyaudio
import wave
from pydub import AudioSegment
# Define a Streamlit app
st.title("Audio Processing App")
# Upload the input audio file
uploaded_audio = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg", "flac", "wma", "m4a"])
# Speed factor input
speed_factor = st.slider("Playback Speed", min_value=0.1, max_value=2.0, step=0.1, value=1.0)
if uploaded_audio is not None:
audio_bytes = uploaded_audio.read()
# Convert audio file to numpy array using soundfile
audio, sample_rate = sf.read(io.BytesIO(audio_bytes))
# Create an AudioSegment from the audio data
audio_segment = AudioSegment(
audio.tobytes(),
frame_rate=sample_rate,
sample_width=2,
channels=1
)
# Slow down the audio based on user's input speed factor
st.write(f"Slowing down audio to {speed_factor}x speed...")
slowed_audio = audio_segment.speedup(playback_speed=1/speed_factor)
# Provide a link to download the processed audio
st.audio(slowed_audio.export(format="wav").read(), format="audio/wav")
# Play the modified audio
st.audio(slowed_audio.export(format="mp3").read(), format="audio/mp3")
# PyAudio code for capturing and playing audio
p = pyaudio.PyAudio()
stream_out = p.open(format=pyaudio.paInt16,
channels=1,
rate=int(sample_rate * speed_factor),
output=True)
stream_in = p.open(format=pyaudio.paInt16,
channels=1,
rate=sample_rate,
input=True)
for _ in range(1):
data = stream_in.read(int(len(slowed_audio) / sample_rate * speed_factor) * 2)
stream_out.write(data)
stream_out.stop_stream()
stream_out.close()
p.terminate()
# Run the Streamlit app
if __name__ == "__main__":
st.write("Upload an audio file to process.")