Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,8 @@ import pandas as pd
|
|
3 |
import re
|
4 |
import nltk
|
5 |
from nltk.corpus import stopwords
|
6 |
-
from
|
7 |
-
|
8 |
|
9 |
# Download NLTK stopwords (if not already downloaded)
|
10 |
nltk.download('stopwords')
|
@@ -13,7 +13,7 @@ nltk.download('stopwords')
|
|
13 |
|
14 |
def clean_text(text):
|
15 |
"""
|
16 |
-
Clean the input text by
|
17 |
and extra spaces.
|
18 |
"""
|
19 |
text = text.lower()
|
@@ -30,9 +30,22 @@ def remove_stopwords(text):
|
|
30 |
filtered_tokens = [token for token in tokens if token not in stop_words]
|
31 |
return " ".join(filtered_tokens)
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# --- Streamlit App Interface ---
|
34 |
|
35 |
-
st.title("NYT Comments
|
36 |
st.markdown(
|
37 |
"""
|
38 |
Upload your CSV file containing NYT comments.
|
@@ -44,45 +57,51 @@ st.markdown(
|
|
44 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
45 |
|
46 |
if uploaded_file is not None:
|
|
|
47 |
df = pd.read_csv(uploaded_file)
|
48 |
st.write("Columns in CSV:", df.columns.tolist())
|
49 |
-
|
50 |
-
#
|
51 |
if 'comment_body' not in df.columns:
|
52 |
st.warning("Column 'comment_body' not found in CSV.")
|
53 |
-
text_column = st.selectbox("Select the column to use for
|
54 |
else:
|
55 |
text_column = 'comment_body'
|
56 |
-
|
57 |
st.markdown("### Preprocessing Comments")
|
58 |
# Preprocess the selected column's text: clean and remove stopwords
|
59 |
df['clean_comment'] = df[text_column].astype(str).apply(clean_text).apply(remove_stopwords)
|
60 |
st.write("Sample processed comments:")
|
61 |
st.write(df[[text_column, 'clean_comment']].head())
|
62 |
-
|
63 |
-
# Prepare documents for topic modeling
|
64 |
-
docs = df['clean_comment'].tolist()
|
65 |
-
|
66 |
-
st.markdown("### Topic Modeling Settings")
|
67 |
-
num_topics = st.slider("Select approximate number of topics", min_value=2, max_value=20, value=5, step=1)
|
68 |
-
|
69 |
-
st.markdown("### Running Topic Modeling")
|
70 |
-
# Create a CountVectorizer using English stopwords
|
71 |
-
vectorizer_model = CountVectorizer(stop_words="english")
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import re
|
4 |
import nltk
|
5 |
from nltk.corpus import stopwords
|
6 |
+
from transformers import pipeline
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
|
9 |
# Download NLTK stopwords (if not already downloaded)
|
10 |
nltk.download('stopwords')
|
|
|
13 |
|
14 |
def clean_text(text):
|
15 |
"""
|
16 |
+
Clean the input text by converting to lowercase, removing non-alphabet characters,
|
17 |
and extra spaces.
|
18 |
"""
|
19 |
text = text.lower()
|
|
|
30 |
filtered_tokens = [token for token in tokens if token not in stop_words]
|
31 |
return " ".join(filtered_tokens)
|
32 |
|
33 |
+
def analyze_emotion(text, classifier):
|
34 |
+
"""
|
35 |
+
Use the Hugging Face pipeline to analyze emotion for the given text.
|
36 |
+
Truncates text to 512 characters if necessary.
|
37 |
+
Returns the label with the highest score.
|
38 |
+
"""
|
39 |
+
# Truncate text to avoid long inputs if necessary
|
40 |
+
truncated = text[:512]
|
41 |
+
result = classifier(truncated)[0]
|
42 |
+
# result is a list of dictionaries with keys "label" and "score"
|
43 |
+
best = max(result, key=lambda x: x["score"])
|
44 |
+
return best["label"]
|
45 |
+
|
46 |
# --- Streamlit App Interface ---
|
47 |
|
48 |
+
st.title("NYT Comments Emotion Analysis App")
|
49 |
st.markdown(
|
50 |
"""
|
51 |
Upload your CSV file containing NYT comments.
|
|
|
57 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
58 |
|
59 |
if uploaded_file is not None:
|
60 |
+
# Load CSV file
|
61 |
df = pd.read_csv(uploaded_file)
|
62 |
st.write("Columns in CSV:", df.columns.tolist())
|
63 |
+
|
64 |
+
# Let user select a text column if 'comment_body' is not present
|
65 |
if 'comment_body' not in df.columns:
|
66 |
st.warning("Column 'comment_body' not found in CSV.")
|
67 |
+
text_column = st.selectbox("Select the column to use for emotion analysis", options=df.columns.tolist())
|
68 |
else:
|
69 |
text_column = 'comment_body'
|
70 |
+
|
71 |
st.markdown("### Preprocessing Comments")
|
72 |
# Preprocess the selected column's text: clean and remove stopwords
|
73 |
df['clean_comment'] = df[text_column].astype(str).apply(clean_text).apply(remove_stopwords)
|
74 |
st.write("Sample processed comments:")
|
75 |
st.write(df[[text_column, 'clean_comment']].head())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
st.markdown("### Running Emotion Analysis")
|
78 |
+
with st.spinner("Loading emotion analysis model..."):
|
79 |
+
# Initialize the Hugging Face emotion analysis pipeline
|
80 |
+
emotion_classifier = pipeline("text-classification",
|
81 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
82 |
+
return_all_scores=True)
|
83 |
+
|
84 |
+
# Analyze emotion for each comment
|
85 |
+
st.markdown("Analyzing emotions for each comment...")
|
86 |
+
# To avoid long waiting times, you can limit analysis to first N rows
|
87 |
+
N = st.number_input("Number of comments to analyze (set 0 for all)", min_value=0, value=0)
|
88 |
+
if N > 0:
|
89 |
+
df_subset = df.head(N)
|
90 |
+
else:
|
91 |
+
df_subset = df.copy()
|
92 |
+
|
93 |
+
# Apply emotion analysis to each cleaned comment
|
94 |
+
df_subset['emotion'] = df_subset['clean_comment'].apply(lambda x: analyze_emotion(x, emotion_classifier))
|
95 |
+
|
96 |
+
st.write("Sample emotion analysis results:")
|
97 |
+
st.write(df_subset[[text_column, 'clean_comment', 'emotion']].head())
|
98 |
+
|
99 |
+
# Aggregate emotion counts for visualization
|
100 |
+
emotion_counts = df_subset['emotion'].value_counts().reset_index()
|
101 |
+
emotion_counts.columns = ['emotion', 'count']
|
102 |
+
|
103 |
+
st.markdown("### Emotion Distribution")
|
104 |
+
st.bar_chart(emotion_counts.set_index('emotion'))
|
105 |
+
|
106 |
+
st.markdown("### Detailed Results")
|
107 |
+
st.write(df_subset)
|