Spaces:
Sleeping
Sleeping
Update api.py
Browse files
api.py
CHANGED
|
@@ -1,744 +1,729 @@
|
|
| 1 |
-
"""
|
| 2 |
-
EASI Severity Prediction REST API
|
| 3 |
-
==================================
|
| 4 |
-
|
| 5 |
-
FastAPI-based REST API for predicting EASI scores from dermatological images.
|
| 6 |
-
Designed for integration with Flutter mobile applications.
|
| 7 |
-
|
| 8 |
-
Endpoints:
|
| 9 |
-
- POST /predict - Upload image and get EASI predictions
|
| 10 |
-
- GET /health - Health check endpoint
|
| 11 |
-
- GET /conditions - Get list of available conditions
|
| 12 |
-
|
| 13 |
-
Installation:
|
| 14 |
-
pip install fastapi uvicorn python-multipart pillow tensorflow numpy pandas huggingface-hub requests
|
| 15 |
-
|
| 16 |
-
Run:
|
| 17 |
-
uvicorn api:app --host 0.0.0.0 --port 8000 --reload
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
import os
|
| 21 |
-
import warnings
|
| 22 |
-
import logging
|
| 23 |
-
from typing import List, Dict, Any, Optional
|
| 24 |
-
from io import BytesIO
|
| 25 |
-
from pathlib import Path
|
| 26 |
-
|
| 27 |
-
# Suppress warnings
|
| 28 |
-
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 29 |
-
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 30 |
-
os.environ['MLIR_CRASH_REPRODUCER_DIRECTORY'] = ''
|
| 31 |
-
warnings.filterwarnings('ignore')
|
| 32 |
-
logging.getLogger('absl').setLevel(logging.ERROR)
|
| 33 |
-
|
| 34 |
-
import tensorflow as tf
|
| 35 |
-
tf.get_logger().setLevel('ERROR')
|
| 36 |
-
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
| 37 |
-
|
| 38 |
-
from fastapi import FastAPI, File, UploadFile, HTTPException, status
|
| 39 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 40 |
-
from fastapi.responses import JSONResponse
|
| 41 |
-
from pydantic import BaseModel, Field
|
| 42 |
-
import numpy as np
|
| 43 |
-
from PIL import Image
|
| 44 |
-
import pickle
|
| 45 |
-
import pandas as pd
|
| 46 |
-
import requests
|
| 47 |
-
from huggingface_hub import hf_hub_download, login
|
| 48 |
-
|
| 49 |
-
# Initialize FastAPI app
|
| 50 |
-
app = FastAPI(
|
| 51 |
-
title="EASI Severity Prediction API",
|
| 52 |
-
description="REST API for predicting EASI scores from skin images",
|
| 53 |
-
version="1.0.0"
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
# CORS middleware for Flutter web/mobile
|
| 57 |
-
app.add_middleware(
|
| 58 |
-
CORSMiddleware,
|
| 59 |
-
allow_origins=["*"], # In production, specify your Flutter app domain
|
| 60 |
-
allow_credentials=True,
|
| 61 |
-
allow_methods=["*"],
|
| 62 |
-
allow_headers=["*"],
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
# Configuration
|
| 66 |
-
HF_REPO_ID = "google/derm-foundation"
|
| 67 |
-
DERM_FOUNDATION_PATH = "./derm_foundation/"
|
| 68 |
-
R2_BASE_URL = os.environ.get("R2_BASE_URL", "https://r2-worker.eczemanage.workers.dev")
|
| 69 |
-
|
| 70 |
-
# Get Hugging Face token from environment variable
|
| 71 |
-
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
| 72 |
-
|
| 73 |
-
# Response Models
|
| 74 |
-
class ConditionPrediction(BaseModel):
|
| 75 |
-
condition: str
|
| 76 |
-
probability: float = Field(..., ge=0, le=1)
|
| 77 |
-
confidence: float = Field(..., ge=0)
|
| 78 |
-
weight: float = Field(..., ge=0)
|
| 79 |
-
easi_category: Optional[str] = None
|
| 80 |
-
easi_contribution: int = Field(..., ge=0, le=3)
|
| 81 |
-
|
| 82 |
-
class EASIComponent(BaseModel):
|
| 83 |
-
name: str
|
| 84 |
-
score: int = Field(..., ge=0, le=3)
|
| 85 |
-
contributing_conditions: List[Dict[str, Any]]
|
| 86 |
-
|
| 87 |
-
class PredictionResponse(BaseModel):
|
| 88 |
-
success: bool
|
| 89 |
-
total_easi_score: int = Field(..., ge=0, le=12)
|
| 90 |
-
severity_interpretation: str
|
| 91 |
-
easi_components: Dict[str, EASIComponent]
|
| 92 |
-
predicted_conditions: List[ConditionPrediction]
|
| 93 |
-
summary_statistics: Dict[str, float]
|
| 94 |
-
image_info: Dict[str, Any]
|
| 95 |
-
|
| 96 |
-
class HealthResponse(BaseModel):
|
| 97 |
-
status: str
|
| 98 |
-
models_loaded: Dict[str, bool]
|
| 99 |
-
available_conditions: int
|
| 100 |
-
hf_token_configured: bool
|
| 101 |
-
model_source: str
|
| 102 |
-
|
| 103 |
-
class ErrorResponse(BaseModel):
|
| 104 |
-
success: bool = False
|
| 105 |
-
error: str
|
| 106 |
-
detail: Optional[str] = None
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
# Model wrapper class
|
| 110 |
-
class DermFoundationNeuralNetwork:
|
| 111 |
-
def __init__(self):
|
| 112 |
-
self.model = None
|
| 113 |
-
self.mlb = None
|
| 114 |
-
self.embedding_scaler = None
|
| 115 |
-
self.confidence_scaler = None
|
| 116 |
-
self.weighted_scaler = None
|
| 117 |
-
|
| 118 |
-
def load_model(self, filepath):
|
| 119 |
-
try:
|
| 120 |
-
with open(filepath, 'rb') as f:
|
| 121 |
-
model_data = pickle.load(f)
|
| 122 |
-
|
| 123 |
-
self.mlb = model_data['mlb']
|
| 124 |
-
self.embedding_scaler = model_data['embedding_scaler']
|
| 125 |
-
self.confidence_scaler = model_data['confidence_scaler']
|
| 126 |
-
self.weighted_scaler = model_data['weighted_scaler']
|
| 127 |
-
|
| 128 |
-
keras_model_path = model_data['keras_model_path']
|
| 129 |
-
if os.path.exists(keras_model_path):
|
| 130 |
-
self.model = tf.keras.models.load_model(keras_model_path)
|
| 131 |
-
return True
|
| 132 |
-
else:
|
| 133 |
-
return False
|
| 134 |
-
except Exception as e:
|
| 135 |
-
print(f"Error loading model: {e}")
|
| 136 |
-
return False
|
| 137 |
-
|
| 138 |
-
def predict(self, embedding):
|
| 139 |
-
if self.model is None:
|
| 140 |
-
return None
|
| 141 |
-
|
| 142 |
-
if len(embedding.shape) == 1:
|
| 143 |
-
embedding = embedding.reshape(1, -1)
|
| 144 |
-
|
| 145 |
-
embedding_scaled = self.embedding_scaler.transform(embedding)
|
| 146 |
-
predictions = self.model.predict(embedding_scaled, verbose=0)
|
| 147 |
-
|
| 148 |
-
condition_probs = predictions['conditions'][0]
|
| 149 |
-
individual_confidences = predictions['individual_confidences'][0]
|
| 150 |
-
individual_weights = predictions['individual_weights'][0]
|
| 151 |
-
|
| 152 |
-
condition_threshold = 0.3
|
| 153 |
-
predicted_condition_indices = np.where(condition_probs > condition_threshold)[0]
|
| 154 |
-
|
| 155 |
-
predicted_conditions = []
|
| 156 |
-
predicted_confidences = []
|
| 157 |
-
predicted_weights_dict = {}
|
| 158 |
-
|
| 159 |
-
for idx in predicted_condition_indices:
|
| 160 |
-
condition_name = self.mlb.classes_[idx]
|
| 161 |
-
condition_prob = float(condition_probs[idx])
|
| 162 |
-
|
| 163 |
-
if individual_confidences[idx] > 0:
|
| 164 |
-
confidence_orig = self.confidence_scaler.inverse_transform([[individual_confidences[idx]]])[0, 0]
|
| 165 |
-
else:
|
| 166 |
-
confidence_orig = 0.0
|
| 167 |
-
|
| 168 |
-
if individual_weights[idx] > 0:
|
| 169 |
-
weight_orig = self.weighted_scaler.inverse_transform([[individual_weights[idx]]])[0, 0]
|
| 170 |
-
else:
|
| 171 |
-
weight_orig = 0.0
|
| 172 |
-
|
| 173 |
-
predicted_conditions.append(condition_name)
|
| 174 |
-
predicted_confidences.append(max(0, confidence_orig))
|
| 175 |
-
predicted_weights_dict[condition_name] = max(0, weight_orig)
|
| 176 |
-
|
| 177 |
-
all_condition_probs = {}
|
| 178 |
-
all_confidences = {}
|
| 179 |
-
all_weights = {}
|
| 180 |
-
|
| 181 |
-
for i, class_name in enumerate(self.mlb.classes_):
|
| 182 |
-
all_condition_probs[class_name] = float(condition_probs[i])
|
| 183 |
-
|
| 184 |
-
if individual_confidences[i] > 0:
|
| 185 |
-
conf_orig = self.confidence_scaler.inverse_transform([[individual_confidences[i]]])[0, 0]
|
| 186 |
-
all_confidences[class_name] = max(0, conf_orig)
|
| 187 |
-
else:
|
| 188 |
-
all_confidences[class_name] = 0.0
|
| 189 |
-
|
| 190 |
-
if individual_weights[i] > 0:
|
| 191 |
-
weight_orig = self.weighted_scaler.inverse_transform([[individual_weights[i]]])[0, 0]
|
| 192 |
-
all_weights[class_name] = max(0, weight_orig)
|
| 193 |
-
else:
|
| 194 |
-
all_weights[class_name] = 0.0
|
| 195 |
-
|
| 196 |
-
return {
|
| 197 |
-
'dermatologist_skin_condition_on_label_name': predicted_conditions,
|
| 198 |
-
'dermatologist_skin_condition_confidence': predicted_confidences,
|
| 199 |
-
'weighted_skin_condition_label': predicted_weights_dict,
|
| 200 |
-
'all_condition_probabilities': all_condition_probs,
|
| 201 |
-
'all_individual_confidences': all_confidences,
|
| 202 |
-
'all_individual_weights': all_weights,
|
| 203 |
-
'condition_threshold': condition_threshold
|
| 204 |
-
}
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
# Helper function to download from Cloudflare R2 with chunked streaming
|
| 208 |
-
def download_derm_foundation_from_r2(output_dir):
|
| 209 |
-
"""Download Derm Foundation model from Cloudflare R2 using memory-efficient streaming"""
|
| 210 |
-
try:
|
| 211 |
-
print(f"Downloading Derm Foundation model from R2 ({R2_BASE_URL})...")
|
| 212 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 213 |
-
|
| 214 |
-
# Files to download
|
| 215 |
-
files_to_download = [
|
| 216 |
-
"saved_model.pb",
|
| 217 |
-
"variables/variables.index",
|
| 218 |
-
"variables/variables.data-00000-of-00001"
|
| 219 |
-
]
|
| 220 |
-
|
| 221 |
-
for file_path in files_to_download:
|
| 222 |
-
print(f"Downloading {file_path}...")
|
| 223 |
-
url = f"{R2_BASE_URL}/{file_path}"
|
| 224 |
-
local_path = os.path.join(output_dir, file_path)
|
| 225 |
-
|
| 226 |
-
# Create subdirectories if needed
|
| 227 |
-
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
| 228 |
-
|
| 229 |
-
# Download file with streaming (ULTRA MEMORY EFFICIENT)
|
| 230 |
-
# Use tiny chunk size and aggressive garbage collection
|
| 231 |
-
import gc
|
| 232 |
-
|
| 233 |
-
with requests.get(url, stream=True, timeout=900) as response:
|
| 234 |
-
response.raise_for_status()
|
| 235 |
-
|
| 236 |
-
total_size = int(response.headers.get('content-length', 0))
|
| 237 |
-
downloaded = 0
|
| 238 |
-
chunk_count = 0
|
| 239 |
-
|
| 240 |
-
# Write directly to disk in tiny chunks (256KB to minimize memory)
|
| 241 |
-
with open(local_path, 'wb') as f:
|
| 242 |
-
for chunk in response.iter_content(chunk_size=256*1024): # 256KB chunks
|
| 243 |
-
if chunk:
|
| 244 |
-
f.write(chunk)
|
| 245 |
-
f.flush() # Force write to disk
|
| 246 |
-
downloaded += len(chunk)
|
| 247 |
-
chunk_count += 1
|
| 248 |
-
|
| 249 |
-
# Aggressive garbage collection every 10 chunks (~2.5MB)
|
| 250 |
-
if chunk_count % 10 == 0:
|
| 251 |
-
gc.collect()
|
| 252 |
-
|
| 253 |
-
# Less frequent progress updates to reduce print overhead
|
| 254 |
-
if total_size > 0 and chunk_count % 20 == 0:
|
| 255 |
-
progress = (downloaded / total_size) * 100
|
| 256 |
-
mb_downloaded = downloaded / (1024*1024)
|
| 257 |
-
mb_total = total_size / (1024*1024)
|
| 258 |
-
print(f" Progress: {progress:.1f}% ({mb_downloaded:.1f}/{mb_total:.1f} MB)")
|
| 259 |
-
|
| 260 |
-
print() # New line after progress
|
| 261 |
-
gc.collect() # Final cleanup
|
| 262 |
-
|
| 263 |
-
print(f"✓ Downloaded: {file_path}")
|
| 264 |
-
|
| 265 |
-
print(f"✓ Derm Foundation model downloaded successfully from R2")
|
| 266 |
-
return True
|
| 267 |
-
except Exception as e:
|
| 268 |
-
print(f"✗ Error downloading from R2: {e}")
|
| 269 |
-
import traceback
|
| 270 |
-
traceback.print_exc()
|
| 271 |
-
return False
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
# Helper function to download from Hugging Face (Fallback) with memory-efficient streaming
|
| 275 |
-
def download_derm_foundation_from_hf(output_dir):
|
| 276 |
-
"""Download Derm Foundation model from Hugging Face using memory-efficient streaming"""
|
| 277 |
-
try:
|
| 278 |
-
# Login to Hugging Face if token is available
|
| 279 |
-
if HF_TOKEN:
|
| 280 |
-
print("Authenticating with Hugging Face...")
|
| 281 |
-
login(token=HF_TOKEN)
|
| 282 |
-
else:
|
| 283 |
-
print("WARNING: No HF token found. Attempting download without authentication...")
|
| 284 |
-
|
| 285 |
-
print(f"Downloading Derm Foundation model from Hugging Face...")
|
| 286 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 287 |
-
|
| 288 |
-
# Files to download
|
| 289 |
-
files_to_download = [
|
| 290 |
-
"saved_model.pb",
|
| 291 |
-
"variables/variables.data-00000-of-00001",
|
| 292 |
-
"variables/variables.index"
|
| 293 |
-
]
|
| 294 |
-
|
| 295 |
-
for file_path in files_to_download:
|
| 296 |
-
print(f"Downloading {file_path}...")
|
| 297 |
-
local_path = os.path.join(output_dir, file_path)
|
| 298 |
-
|
| 299 |
-
# Create subdirectories if needed
|
| 300 |
-
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
| 301 |
-
|
| 302 |
-
# Download file with token if available
|
| 303 |
-
# hf_hub_download handles streaming internally
|
| 304 |
-
downloaded_path = hf_hub_download(
|
| 305 |
-
repo_id=HF_REPO_ID,
|
| 306 |
-
filename=file_path,
|
| 307 |
-
token=HF_TOKEN,
|
| 308 |
-
cache_dir=None,
|
| 309 |
-
local_dir=output_dir,
|
| 310 |
-
local_dir_use_symlinks=False,
|
| 311 |
-
resume_download=True # Resume if interrupted
|
| 312 |
-
)
|
| 313 |
-
print(f"✓ Downloaded: {file_path}")
|
| 314 |
-
|
| 315 |
-
print(f"✓ Derm Foundation model downloaded successfully from HuggingFace")
|
| 316 |
-
return True
|
| 317 |
-
except Exception as e:
|
| 318 |
-
print(f"✗ Error downloading from Hugging Face: {e}")
|
| 319 |
-
print(f"Make sure HUGGINGFACE_TOKEN is set in Render environment variables")
|
| 320 |
-
import traceback
|
| 321 |
-
traceback.print_exc()
|
| 322 |
-
return False
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
# EASI calculation functions
|
| 326 |
-
def calculate_easi_scores(predictions):
|
| 327 |
-
easi_categories = {
|
| 328 |
-
'erythema': {
|
| 329 |
-
'name': 'Erythema (Redness)',
|
| 330 |
-
'conditions': [
|
| 331 |
-
'Post-Inflammatory hyperpigmentation', 'Erythema ab igne', 'Erythema annulare centrifugum',
|
| 332 |
-
'Erythema elevatum diutinum', 'Erythema gyratum repens', 'Erythema multiforme',
|
| 333 |
-
'Erythema nodosum', 'Flagellate erythema', 'Annular erythema', 'Drug Rash',
|
| 334 |
-
'Allergic Contact Dermatitis', 'Irritant Contact Dermatitis', 'Contact dermatitis',
|
| 335 |
-
'Acute dermatitis', 'Chronic dermatitis', 'Acute and chronic dermatitis',
|
| 336 |
-
'Sunburn', 'Photodermatitis', 'Phytophotodermatitis', 'Rosacea',
|
| 337 |
-
'Seborrheic Dermatitis', 'Stasis Dermatitis', 'Perioral Dermatitis',
|
| 338 |
-
'Burn erythema of abdominal wall', 'Burn erythema of back of hand',
|
| 339 |
-
'Burn erythema of lower leg', 'Cellulitis', 'Infection of skin',
|
| 340 |
-
'Viral Exanthem', 'Infected eczema', 'Crusted eczematous dermatitis',
|
| 341 |
-
'Inflammatory dermatosis', 'Vasculitis of the skin', 'Leukocytoclastic Vasculitis',
|
| 342 |
-
'Cutaneous lupus', 'CD - Contact dermatitis', 'Acute dermatitis, NOS',
|
| 343 |
-
'Herpes Simplex', 'Hypersensitivity', 'Impetigo', 'Pigmented purpuric eruption',
|
| 344 |
-
'Pityriasis rosea', 'Tinea', 'Tinea Versicolor'
|
| 345 |
-
]
|
| 346 |
-
},
|
| 347 |
-
'induration': {
|
| 348 |
-
'name': 'Induration/Papulation (Swelling/Bumps)',
|
| 349 |
-
'conditions': [
|
| 350 |
-
'Prurigo nodularis', 'Urticaria', 'Granuloma annulare', 'Morphea',
|
| 351 |
-
'Scleroderma', 'Lichen Simplex Chronicus', 'Lichen planus', 'lichenoid eruption',
|
| 352 |
-
'Lichen nitidus', 'Lichen spinulosus', 'Lichen striatus', 'Keratosis pilaris',
|
| 353 |
-
'Molluscum Contagiosum', 'Verruca vulgaris', 'Folliculitis', 'Acne',
|
| 354 |
-
'Hidradenitis', 'Nodular vasculitis', 'Sweet syndrome', 'Necrobiosis lipoidica',
|
| 355 |
-
'Basal Cell Carcinoma', 'SCC', 'SCCIS', 'SK', 'ISK',
|
| 356 |
-
'Cutaneous T Cell Lymphoma', 'Skin cancer', 'Adnexal neoplasm',
|
| 357 |
-
'Insect Bite', 'Milia', 'Miliaria', 'Xanthoma', 'Psoriasis',
|
| 358 |
-
'Lichen planus/lichenoid eruption'
|
| 359 |
-
]
|
| 360 |
-
},
|
| 361 |
-
'excoriation': {
|
| 362 |
-
'name': 'Excoriation (Scratching Damage)',
|
| 363 |
-
'conditions': [
|
| 364 |
-
'Inflicted skin lesions', 'Scabies', 'Abrasion', 'Abrasion of wrist',
|
| 365 |
-
'Superficial wound of body region', 'Scrape', 'Animal bite - wound',
|
| 366 |
-
'Pruritic dermatitis', 'Prurigo', 'Atopic dermatitis', 'Scab'
|
| 367 |
-
]
|
| 368 |
-
},
|
| 369 |
-
'lichenification': {
|
| 370 |
-
'name': 'Lichenification (Skin Thickening)',
|
| 371 |
-
'conditions': [
|
| 372 |
-
'Lichenified eczematous dermatitis', 'Acanthosis nigricans',
|
| 373 |
-
'Hyperkeratosis of skin', 'HK - Hyperkeratosis', 'Keratoderma',
|
| 374 |
-
'Ichthyosis', 'Ichthyosiform dermatosis', 'Chronic eczema',
|
| 375 |
-
'Psoriasis', 'Xerosis'
|
| 376 |
-
]
|
| 377 |
-
}
|
| 378 |
-
}
|
| 379 |
-
|
| 380 |
-
def probability_to_score(prob):
|
| 381 |
-
if prob < 0.171:
|
| 382 |
-
return 0
|
| 383 |
-
elif prob < 0.238:
|
| 384 |
-
return 1
|
| 385 |
-
elif prob < 0.421:
|
| 386 |
-
return 2
|
| 387 |
-
elif prob < 0.614:
|
| 388 |
-
return 3
|
| 389 |
-
else:
|
| 390 |
-
return 3
|
| 391 |
-
|
| 392 |
-
easi_results = {}
|
| 393 |
-
all_condition_probs = predictions['all_condition_probabilities']
|
| 394 |
-
|
| 395 |
-
for component, category_info in easi_categories.items():
|
| 396 |
-
category_conditions = []
|
| 397 |
-
|
| 398 |
-
for condition_name, probability in all_condition_probs.items():
|
| 399 |
-
if condition_name.lower() == 'eczema':
|
| 400 |
-
continue
|
| 401 |
-
|
| 402 |
-
if condition_name in category_info['conditions']:
|
| 403 |
-
category_conditions.append({
|
| 404 |
-
'condition': condition_name,
|
| 405 |
-
'probability': probability,
|
| 406 |
-
'individual_score': probability_to_score(probability)
|
| 407 |
-
})
|
| 408 |
-
|
| 409 |
-
category_conditions = [c for c in category_conditions if c['individual_score'] > 0]
|
| 410 |
-
category_conditions.sort(key=lambda x: x['probability'], reverse=True)
|
| 411 |
-
|
| 412 |
-
component_score = sum(c['individual_score'] for c in category_conditions)
|
| 413 |
-
component_score = min(component_score, 3)
|
| 414 |
-
|
| 415 |
-
easi_results[component] = {
|
| 416 |
-
'name': category_info['name'],
|
| 417 |
-
'score': component_score,
|
| 418 |
-
'contributing_conditions': category_conditions
|
| 419 |
-
}
|
| 420 |
-
|
| 421 |
-
total_easi = sum(result['score'] for result in easi_results.values())
|
| 422 |
-
|
| 423 |
-
return easi_results, total_easi
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
def get_severity_interpretation(total_easi):
|
| 427 |
-
if total_easi == 0:
|
| 428 |
-
return "No significant EASI features detected"
|
| 429 |
-
elif total_easi <= 3:
|
| 430 |
-
return "Mild EASI severity"
|
| 431 |
-
elif total_easi <= 6:
|
| 432 |
-
return "Moderate EASI severity"
|
| 433 |
-
elif total_easi <= 9:
|
| 434 |
-
return "Severe EASI severity"
|
| 435 |
-
else:
|
| 436 |
-
return "Very Severe EASI severity"
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
# Image processing functions
|
| 440 |
-
def smart_crop_to_square(image):
|
| 441 |
-
width, height = image.size
|
| 442 |
-
if width == height:
|
| 443 |
-
return image
|
| 444 |
-
|
| 445 |
-
size = min(width, height)
|
| 446 |
-
left = (width - size) // 2
|
| 447 |
-
top = (height - size) // 2
|
| 448 |
-
right = left + size
|
| 449 |
-
bottom = top + size
|
| 450 |
-
|
| 451 |
-
return image.crop((left, top, right, bottom))
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
def generate_derm_foundation_embedding(model, image):
|
| 455 |
-
try:
|
| 456 |
-
if image.mode != 'RGB':
|
| 457 |
-
image = image.convert('RGB')
|
| 458 |
-
|
| 459 |
-
buf = BytesIO()
|
| 460 |
-
image.save(buf, format='JPEG')
|
| 461 |
-
image_bytes = buf.getvalue()
|
| 462 |
-
|
| 463 |
-
input_tensor = tf.train.Example(features=tf.train.Features(
|
| 464 |
-
feature={'image/encoded': tf.train.Feature(
|
| 465 |
-
bytes_list=tf.train.BytesList(value=[image_bytes]))
|
| 466 |
-
})).SerializeToString()
|
| 467 |
-
|
| 468 |
-
infer = model.signatures["serving_default"]
|
| 469 |
-
output = infer(inputs=tf.constant([input_tensor]))
|
| 470 |
-
|
| 471 |
-
if 'embedding' in output:
|
| 472 |
-
embedding_vector = output['embedding'].numpy().flatten()
|
| 473 |
-
else:
|
| 474 |
-
key = list(output.keys())[0]
|
| 475 |
-
embedding_vector = output[key].numpy().flatten()
|
| 476 |
-
|
| 477 |
-
return embedding_vector
|
| 478 |
-
except Exception as e:
|
| 479 |
-
raise HTTPException(status_code=500, detail=f"Error generating embedding: {str(e)}")
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
# Global model instances
|
| 483 |
-
derm_model = None
|
| 484 |
-
easi_model = None
|
| 485 |
-
model_source = "not_loaded"
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
@app.on_event("startup")
|
| 489 |
-
async def load_models():
|
| 490 |
-
"""Load models on startup"""
|
| 491 |
-
global derm_model, easi_model, model_source
|
| 492 |
-
|
| 493 |
-
# Force garbage collection before starting
|
| 494 |
-
import gc
|
| 495 |
-
gc.collect()
|
| 496 |
-
|
| 497 |
-
# Check if model exists
|
| 498 |
-
if not os.path.exists(DERM_FOUNDATION_PATH) or not os.path.exists(os.path.join(DERM_FOUNDATION_PATH, "saved_model.pb")):
|
| 499 |
-
print("=" * 60)
|
| 500 |
-
print("Derm Foundation model not found locally.")
|
| 501 |
-
print("
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
success =
|
| 506 |
-
|
| 507 |
-
if success:
|
| 508 |
-
model_source = "
|
| 509 |
-
else:
|
| 510 |
-
|
| 511 |
-
print("
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
# Load
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
print(f"
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
"
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
"
|
| 585 |
-
"
|
| 586 |
-
"
|
| 587 |
-
}
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
@app.get("/
|
| 591 |
-
async def
|
| 592 |
-
"""
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
@app.exception_handler(HTTPException)
|
| 732 |
-
async def http_exception_handler(request, exc):
|
| 733 |
-
return JSONResponse(
|
| 734 |
-
status_code=exc.status_code,
|
| 735 |
-
content=ErrorResponse(
|
| 736 |
-
error=exc.detail,
|
| 737 |
-
detail=str(exc)
|
| 738 |
-
).dict()
|
| 739 |
-
)
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
if __name__ == "__main__":
|
| 743 |
-
import uvicorn
|
| 744 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
EASI Severity Prediction REST API
|
| 3 |
+
==================================
|
| 4 |
+
|
| 5 |
+
FastAPI-based REST API for predicting EASI scores from dermatological images.
|
| 6 |
+
Designed for integration with Flutter mobile applications.
|
| 7 |
+
|
| 8 |
+
Endpoints:
|
| 9 |
+
- POST /predict - Upload image and get EASI predictions
|
| 10 |
+
- GET /health - Health check endpoint
|
| 11 |
+
- GET /conditions - Get list of available conditions
|
| 12 |
+
|
| 13 |
+
Installation:
|
| 14 |
+
pip install fastapi uvicorn python-multipart pillow tensorflow numpy pandas huggingface-hub requests
|
| 15 |
+
|
| 16 |
+
Run:
|
| 17 |
+
uvicorn api:app --host 0.0.0.0 --port 8000 --reload
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
import warnings
|
| 22 |
+
import logging
|
| 23 |
+
from typing import List, Dict, Any, Optional
|
| 24 |
+
from io import BytesIO
|
| 25 |
+
from pathlib import Path
|
| 26 |
+
|
| 27 |
+
# Suppress warnings
|
| 28 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 29 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 30 |
+
os.environ['MLIR_CRASH_REPRODUCER_DIRECTORY'] = ''
|
| 31 |
+
warnings.filterwarnings('ignore')
|
| 32 |
+
logging.getLogger('absl').setLevel(logging.ERROR)
|
| 33 |
+
|
| 34 |
+
import tensorflow as tf
|
| 35 |
+
tf.get_logger().setLevel('ERROR')
|
| 36 |
+
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
| 37 |
+
|
| 38 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, status
|
| 39 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 40 |
+
from fastapi.responses import JSONResponse
|
| 41 |
+
from pydantic import BaseModel, Field
|
| 42 |
+
import numpy as np
|
| 43 |
+
from PIL import Image
|
| 44 |
+
import pickle
|
| 45 |
+
import pandas as pd
|
| 46 |
+
import requests
|
| 47 |
+
from huggingface_hub import hf_hub_download, login
|
| 48 |
+
|
| 49 |
+
# Initialize FastAPI app
|
| 50 |
+
app = FastAPI(
|
| 51 |
+
title="EASI Severity Prediction API",
|
| 52 |
+
description="REST API for predicting EASI scores from skin images",
|
| 53 |
+
version="1.0.0"
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# CORS middleware for Flutter web/mobile
|
| 57 |
+
app.add_middleware(
|
| 58 |
+
CORSMiddleware,
|
| 59 |
+
allow_origins=["*"], # In production, specify your Flutter app domain
|
| 60 |
+
allow_credentials=True,
|
| 61 |
+
allow_methods=["*"],
|
| 62 |
+
allow_headers=["*"],
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Configuration
|
| 66 |
+
HF_REPO_ID = "google/derm-foundation"
|
| 67 |
+
DERM_FOUNDATION_PATH = "./derm_foundation/"
|
| 68 |
+
R2_BASE_URL = os.environ.get("R2_BASE_URL", "https://r2-worker.eczemanage.workers.dev")
|
| 69 |
+
|
| 70 |
+
# Get Hugging Face token from environment variable
|
| 71 |
+
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
| 72 |
+
|
| 73 |
+
# Response Models
|
| 74 |
+
class ConditionPrediction(BaseModel):
|
| 75 |
+
condition: str
|
| 76 |
+
probability: float = Field(..., ge=0, le=1)
|
| 77 |
+
confidence: float = Field(..., ge=0)
|
| 78 |
+
weight: float = Field(..., ge=0)
|
| 79 |
+
easi_category: Optional[str] = None
|
| 80 |
+
easi_contribution: int = Field(..., ge=0, le=3)
|
| 81 |
+
|
| 82 |
+
class EASIComponent(BaseModel):
|
| 83 |
+
name: str
|
| 84 |
+
score: int = Field(..., ge=0, le=3)
|
| 85 |
+
contributing_conditions: List[Dict[str, Any]]
|
| 86 |
+
|
| 87 |
+
class PredictionResponse(BaseModel):
|
| 88 |
+
success: bool
|
| 89 |
+
total_easi_score: int = Field(..., ge=0, le=12)
|
| 90 |
+
severity_interpretation: str
|
| 91 |
+
easi_components: Dict[str, EASIComponent]
|
| 92 |
+
predicted_conditions: List[ConditionPrediction]
|
| 93 |
+
summary_statistics: Dict[str, float]
|
| 94 |
+
image_info: Dict[str, Any]
|
| 95 |
+
|
| 96 |
+
class HealthResponse(BaseModel):
|
| 97 |
+
status: str
|
| 98 |
+
models_loaded: Dict[str, bool]
|
| 99 |
+
available_conditions: int
|
| 100 |
+
hf_token_configured: bool
|
| 101 |
+
model_source: str
|
| 102 |
+
|
| 103 |
+
class ErrorResponse(BaseModel):
|
| 104 |
+
success: bool = False
|
| 105 |
+
error: str
|
| 106 |
+
detail: Optional[str] = None
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# Model wrapper class
|
| 110 |
+
class DermFoundationNeuralNetwork:
|
| 111 |
+
def __init__(self):
|
| 112 |
+
self.model = None
|
| 113 |
+
self.mlb = None
|
| 114 |
+
self.embedding_scaler = None
|
| 115 |
+
self.confidence_scaler = None
|
| 116 |
+
self.weighted_scaler = None
|
| 117 |
+
|
| 118 |
+
def load_model(self, filepath):
|
| 119 |
+
try:
|
| 120 |
+
with open(filepath, 'rb') as f:
|
| 121 |
+
model_data = pickle.load(f)
|
| 122 |
+
|
| 123 |
+
self.mlb = model_data['mlb']
|
| 124 |
+
self.embedding_scaler = model_data['embedding_scaler']
|
| 125 |
+
self.confidence_scaler = model_data['confidence_scaler']
|
| 126 |
+
self.weighted_scaler = model_data['weighted_scaler']
|
| 127 |
+
|
| 128 |
+
keras_model_path = model_data['keras_model_path']
|
| 129 |
+
if os.path.exists(keras_model_path):
|
| 130 |
+
self.model = tf.keras.models.load_model(keras_model_path)
|
| 131 |
+
return True
|
| 132 |
+
else:
|
| 133 |
+
return False
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error loading model: {e}")
|
| 136 |
+
return False
|
| 137 |
+
|
| 138 |
+
def predict(self, embedding):
|
| 139 |
+
if self.model is None:
|
| 140 |
+
return None
|
| 141 |
+
|
| 142 |
+
if len(embedding.shape) == 1:
|
| 143 |
+
embedding = embedding.reshape(1, -1)
|
| 144 |
+
|
| 145 |
+
embedding_scaled = self.embedding_scaler.transform(embedding)
|
| 146 |
+
predictions = self.model.predict(embedding_scaled, verbose=0)
|
| 147 |
+
|
| 148 |
+
condition_probs = predictions['conditions'][0]
|
| 149 |
+
individual_confidences = predictions['individual_confidences'][0]
|
| 150 |
+
individual_weights = predictions['individual_weights'][0]
|
| 151 |
+
|
| 152 |
+
condition_threshold = 0.3
|
| 153 |
+
predicted_condition_indices = np.where(condition_probs > condition_threshold)[0]
|
| 154 |
+
|
| 155 |
+
predicted_conditions = []
|
| 156 |
+
predicted_confidences = []
|
| 157 |
+
predicted_weights_dict = {}
|
| 158 |
+
|
| 159 |
+
for idx in predicted_condition_indices:
|
| 160 |
+
condition_name = self.mlb.classes_[idx]
|
| 161 |
+
condition_prob = float(condition_probs[idx])
|
| 162 |
+
|
| 163 |
+
if individual_confidences[idx] > 0:
|
| 164 |
+
confidence_orig = self.confidence_scaler.inverse_transform([[individual_confidences[idx]]])[0, 0]
|
| 165 |
+
else:
|
| 166 |
+
confidence_orig = 0.0
|
| 167 |
+
|
| 168 |
+
if individual_weights[idx] > 0:
|
| 169 |
+
weight_orig = self.weighted_scaler.inverse_transform([[individual_weights[idx]]])[0, 0]
|
| 170 |
+
else:
|
| 171 |
+
weight_orig = 0.0
|
| 172 |
+
|
| 173 |
+
predicted_conditions.append(condition_name)
|
| 174 |
+
predicted_confidences.append(max(0, confidence_orig))
|
| 175 |
+
predicted_weights_dict[condition_name] = max(0, weight_orig)
|
| 176 |
+
|
| 177 |
+
all_condition_probs = {}
|
| 178 |
+
all_confidences = {}
|
| 179 |
+
all_weights = {}
|
| 180 |
+
|
| 181 |
+
for i, class_name in enumerate(self.mlb.classes_):
|
| 182 |
+
all_condition_probs[class_name] = float(condition_probs[i])
|
| 183 |
+
|
| 184 |
+
if individual_confidences[i] > 0:
|
| 185 |
+
conf_orig = self.confidence_scaler.inverse_transform([[individual_confidences[i]]])[0, 0]
|
| 186 |
+
all_confidences[class_name] = max(0, conf_orig)
|
| 187 |
+
else:
|
| 188 |
+
all_confidences[class_name] = 0.0
|
| 189 |
+
|
| 190 |
+
if individual_weights[i] > 0:
|
| 191 |
+
weight_orig = self.weighted_scaler.inverse_transform([[individual_weights[i]]])[0, 0]
|
| 192 |
+
all_weights[class_name] = max(0, weight_orig)
|
| 193 |
+
else:
|
| 194 |
+
all_weights[class_name] = 0.0
|
| 195 |
+
|
| 196 |
+
return {
|
| 197 |
+
'dermatologist_skin_condition_on_label_name': predicted_conditions,
|
| 198 |
+
'dermatologist_skin_condition_confidence': predicted_confidences,
|
| 199 |
+
'weighted_skin_condition_label': predicted_weights_dict,
|
| 200 |
+
'all_condition_probabilities': all_condition_probs,
|
| 201 |
+
'all_individual_confidences': all_confidences,
|
| 202 |
+
'all_individual_weights': all_weights,
|
| 203 |
+
'condition_threshold': condition_threshold
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# Helper function to download from Cloudflare R2 with chunked streaming
|
| 208 |
+
def download_derm_foundation_from_r2(output_dir):
|
| 209 |
+
"""Download Derm Foundation model from Cloudflare R2 using memory-efficient streaming"""
|
| 210 |
+
try:
|
| 211 |
+
print(f"Downloading Derm Foundation model from R2 ({R2_BASE_URL})...")
|
| 212 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 213 |
+
|
| 214 |
+
# Files to download
|
| 215 |
+
files_to_download = [
|
| 216 |
+
"saved_model.pb",
|
| 217 |
+
"variables/variables.index",
|
| 218 |
+
"variables/variables.data-00000-of-00001"
|
| 219 |
+
]
|
| 220 |
+
|
| 221 |
+
for file_path in files_to_download:
|
| 222 |
+
print(f"Downloading {file_path}...")
|
| 223 |
+
url = f"{R2_BASE_URL}/{file_path}"
|
| 224 |
+
local_path = os.path.join(output_dir, file_path)
|
| 225 |
+
|
| 226 |
+
# Create subdirectories if needed
|
| 227 |
+
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
| 228 |
+
|
| 229 |
+
# Download file with streaming (ULTRA MEMORY EFFICIENT)
|
| 230 |
+
# Use tiny chunk size and aggressive garbage collection
|
| 231 |
+
import gc
|
| 232 |
+
|
| 233 |
+
with requests.get(url, stream=True, timeout=900) as response:
|
| 234 |
+
response.raise_for_status()
|
| 235 |
+
|
| 236 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 237 |
+
downloaded = 0
|
| 238 |
+
chunk_count = 0
|
| 239 |
+
|
| 240 |
+
# Write directly to disk in tiny chunks (256KB to minimize memory)
|
| 241 |
+
with open(local_path, 'wb') as f:
|
| 242 |
+
for chunk in response.iter_content(chunk_size=256*1024): # 256KB chunks
|
| 243 |
+
if chunk:
|
| 244 |
+
f.write(chunk)
|
| 245 |
+
f.flush() # Force write to disk
|
| 246 |
+
downloaded += len(chunk)
|
| 247 |
+
chunk_count += 1
|
| 248 |
+
|
| 249 |
+
# Aggressive garbage collection every 10 chunks (~2.5MB)
|
| 250 |
+
if chunk_count % 10 == 0:
|
| 251 |
+
gc.collect()
|
| 252 |
+
|
| 253 |
+
# Less frequent progress updates to reduce print overhead
|
| 254 |
+
if total_size > 0 and chunk_count % 20 == 0:
|
| 255 |
+
progress = (downloaded / total_size) * 100
|
| 256 |
+
mb_downloaded = downloaded / (1024*1024)
|
| 257 |
+
mb_total = total_size / (1024*1024)
|
| 258 |
+
print(f" Progress: {progress:.1f}% ({mb_downloaded:.1f}/{mb_total:.1f} MB)")
|
| 259 |
+
|
| 260 |
+
print() # New line after progress
|
| 261 |
+
gc.collect() # Final cleanup
|
| 262 |
+
|
| 263 |
+
print(f"✓ Downloaded: {file_path}")
|
| 264 |
+
|
| 265 |
+
print(f"✓ Derm Foundation model downloaded successfully from R2")
|
| 266 |
+
return True
|
| 267 |
+
except Exception as e:
|
| 268 |
+
print(f"✗ Error downloading from R2: {e}")
|
| 269 |
+
import traceback
|
| 270 |
+
traceback.print_exc()
|
| 271 |
+
return False
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
# Helper function to download from Hugging Face (Fallback) with memory-efficient streaming
|
| 275 |
+
def download_derm_foundation_from_hf(output_dir):
|
| 276 |
+
"""Download Derm Foundation model from Hugging Face using memory-efficient streaming"""
|
| 277 |
+
try:
|
| 278 |
+
# Login to Hugging Face if token is available
|
| 279 |
+
if HF_TOKEN:
|
| 280 |
+
print("Authenticating with Hugging Face...")
|
| 281 |
+
login(token=HF_TOKEN)
|
| 282 |
+
else:
|
| 283 |
+
print("WARNING: No HF token found. Attempting download without authentication...")
|
| 284 |
+
|
| 285 |
+
print(f"Downloading Derm Foundation model from Hugging Face...")
|
| 286 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 287 |
+
|
| 288 |
+
# Files to download
|
| 289 |
+
files_to_download = [
|
| 290 |
+
"saved_model.pb",
|
| 291 |
+
"variables/variables.data-00000-of-00001",
|
| 292 |
+
"variables/variables.index"
|
| 293 |
+
]
|
| 294 |
+
|
| 295 |
+
for file_path in files_to_download:
|
| 296 |
+
print(f"Downloading {file_path}...")
|
| 297 |
+
local_path = os.path.join(output_dir, file_path)
|
| 298 |
+
|
| 299 |
+
# Create subdirectories if needed
|
| 300 |
+
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
| 301 |
+
|
| 302 |
+
# Download file with token if available
|
| 303 |
+
# hf_hub_download handles streaming internally
|
| 304 |
+
downloaded_path = hf_hub_download(
|
| 305 |
+
repo_id=HF_REPO_ID,
|
| 306 |
+
filename=file_path,
|
| 307 |
+
token=HF_TOKEN,
|
| 308 |
+
cache_dir=None,
|
| 309 |
+
local_dir=output_dir,
|
| 310 |
+
local_dir_use_symlinks=False,
|
| 311 |
+
resume_download=True # Resume if interrupted
|
| 312 |
+
)
|
| 313 |
+
print(f"✓ Downloaded: {file_path}")
|
| 314 |
+
|
| 315 |
+
print(f"✓ Derm Foundation model downloaded successfully from HuggingFace")
|
| 316 |
+
return True
|
| 317 |
+
except Exception as e:
|
| 318 |
+
print(f"✗ Error downloading from Hugging Face: {e}")
|
| 319 |
+
print(f"Make sure HUGGINGFACE_TOKEN is set in Render environment variables")
|
| 320 |
+
import traceback
|
| 321 |
+
traceback.print_exc()
|
| 322 |
+
return False
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
# EASI calculation functions
|
| 326 |
+
def calculate_easi_scores(predictions):
|
| 327 |
+
easi_categories = {
|
| 328 |
+
'erythema': {
|
| 329 |
+
'name': 'Erythema (Redness)',
|
| 330 |
+
'conditions': [
|
| 331 |
+
'Post-Inflammatory hyperpigmentation', 'Erythema ab igne', 'Erythema annulare centrifugum',
|
| 332 |
+
'Erythema elevatum diutinum', 'Erythema gyratum repens', 'Erythema multiforme',
|
| 333 |
+
'Erythema nodosum', 'Flagellate erythema', 'Annular erythema', 'Drug Rash',
|
| 334 |
+
'Allergic Contact Dermatitis', 'Irritant Contact Dermatitis', 'Contact dermatitis',
|
| 335 |
+
'Acute dermatitis', 'Chronic dermatitis', 'Acute and chronic dermatitis',
|
| 336 |
+
'Sunburn', 'Photodermatitis', 'Phytophotodermatitis', 'Rosacea',
|
| 337 |
+
'Seborrheic Dermatitis', 'Stasis Dermatitis', 'Perioral Dermatitis',
|
| 338 |
+
'Burn erythema of abdominal wall', 'Burn erythema of back of hand',
|
| 339 |
+
'Burn erythema of lower leg', 'Cellulitis', 'Infection of skin',
|
| 340 |
+
'Viral Exanthem', 'Infected eczema', 'Crusted eczematous dermatitis',
|
| 341 |
+
'Inflammatory dermatosis', 'Vasculitis of the skin', 'Leukocytoclastic Vasculitis',
|
| 342 |
+
'Cutaneous lupus', 'CD - Contact dermatitis', 'Acute dermatitis, NOS',
|
| 343 |
+
'Herpes Simplex', 'Hypersensitivity', 'Impetigo', 'Pigmented purpuric eruption',
|
| 344 |
+
'Pityriasis rosea', 'Tinea', 'Tinea Versicolor'
|
| 345 |
+
]
|
| 346 |
+
},
|
| 347 |
+
'induration': {
|
| 348 |
+
'name': 'Induration/Papulation (Swelling/Bumps)',
|
| 349 |
+
'conditions': [
|
| 350 |
+
'Prurigo nodularis', 'Urticaria', 'Granuloma annulare', 'Morphea',
|
| 351 |
+
'Scleroderma', 'Lichen Simplex Chronicus', 'Lichen planus', 'lichenoid eruption',
|
| 352 |
+
'Lichen nitidus', 'Lichen spinulosus', 'Lichen striatus', 'Keratosis pilaris',
|
| 353 |
+
'Molluscum Contagiosum', 'Verruca vulgaris', 'Folliculitis', 'Acne',
|
| 354 |
+
'Hidradenitis', 'Nodular vasculitis', 'Sweet syndrome', 'Necrobiosis lipoidica',
|
| 355 |
+
'Basal Cell Carcinoma', 'SCC', 'SCCIS', 'SK', 'ISK',
|
| 356 |
+
'Cutaneous T Cell Lymphoma', 'Skin cancer', 'Adnexal neoplasm',
|
| 357 |
+
'Insect Bite', 'Milia', 'Miliaria', 'Xanthoma', 'Psoriasis',
|
| 358 |
+
'Lichen planus/lichenoid eruption'
|
| 359 |
+
]
|
| 360 |
+
},
|
| 361 |
+
'excoriation': {
|
| 362 |
+
'name': 'Excoriation (Scratching Damage)',
|
| 363 |
+
'conditions': [
|
| 364 |
+
'Inflicted skin lesions', 'Scabies', 'Abrasion', 'Abrasion of wrist',
|
| 365 |
+
'Superficial wound of body region', 'Scrape', 'Animal bite - wound',
|
| 366 |
+
'Pruritic dermatitis', 'Prurigo', 'Atopic dermatitis', 'Scab'
|
| 367 |
+
]
|
| 368 |
+
},
|
| 369 |
+
'lichenification': {
|
| 370 |
+
'name': 'Lichenification (Skin Thickening)',
|
| 371 |
+
'conditions': [
|
| 372 |
+
'Lichenified eczematous dermatitis', 'Acanthosis nigricans',
|
| 373 |
+
'Hyperkeratosis of skin', 'HK - Hyperkeratosis', 'Keratoderma',
|
| 374 |
+
'Ichthyosis', 'Ichthyosiform dermatosis', 'Chronic eczema',
|
| 375 |
+
'Psoriasis', 'Xerosis'
|
| 376 |
+
]
|
| 377 |
+
}
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
def probability_to_score(prob):
|
| 381 |
+
if prob < 0.171:
|
| 382 |
+
return 0
|
| 383 |
+
elif prob < 0.238:
|
| 384 |
+
return 1
|
| 385 |
+
elif prob < 0.421:
|
| 386 |
+
return 2
|
| 387 |
+
elif prob < 0.614:
|
| 388 |
+
return 3
|
| 389 |
+
else:
|
| 390 |
+
return 3
|
| 391 |
+
|
| 392 |
+
easi_results = {}
|
| 393 |
+
all_condition_probs = predictions['all_condition_probabilities']
|
| 394 |
+
|
| 395 |
+
for component, category_info in easi_categories.items():
|
| 396 |
+
category_conditions = []
|
| 397 |
+
|
| 398 |
+
for condition_name, probability in all_condition_probs.items():
|
| 399 |
+
if condition_name.lower() == 'eczema':
|
| 400 |
+
continue
|
| 401 |
+
|
| 402 |
+
if condition_name in category_info['conditions']:
|
| 403 |
+
category_conditions.append({
|
| 404 |
+
'condition': condition_name,
|
| 405 |
+
'probability': probability,
|
| 406 |
+
'individual_score': probability_to_score(probability)
|
| 407 |
+
})
|
| 408 |
+
|
| 409 |
+
category_conditions = [c for c in category_conditions if c['individual_score'] > 0]
|
| 410 |
+
category_conditions.sort(key=lambda x: x['probability'], reverse=True)
|
| 411 |
+
|
| 412 |
+
component_score = sum(c['individual_score'] for c in category_conditions)
|
| 413 |
+
component_score = min(component_score, 3)
|
| 414 |
+
|
| 415 |
+
easi_results[component] = {
|
| 416 |
+
'name': category_info['name'],
|
| 417 |
+
'score': component_score,
|
| 418 |
+
'contributing_conditions': category_conditions
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
total_easi = sum(result['score'] for result in easi_results.values())
|
| 422 |
+
|
| 423 |
+
return easi_results, total_easi
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
def get_severity_interpretation(total_easi):
|
| 427 |
+
if total_easi == 0:
|
| 428 |
+
return "No significant EASI features detected"
|
| 429 |
+
elif total_easi <= 3:
|
| 430 |
+
return "Mild EASI severity"
|
| 431 |
+
elif total_easi <= 6:
|
| 432 |
+
return "Moderate EASI severity"
|
| 433 |
+
elif total_easi <= 9:
|
| 434 |
+
return "Severe EASI severity"
|
| 435 |
+
else:
|
| 436 |
+
return "Very Severe EASI severity"
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
# Image processing functions
|
| 440 |
+
def smart_crop_to_square(image):
|
| 441 |
+
width, height = image.size
|
| 442 |
+
if width == height:
|
| 443 |
+
return image
|
| 444 |
+
|
| 445 |
+
size = min(width, height)
|
| 446 |
+
left = (width - size) // 2
|
| 447 |
+
top = (height - size) // 2
|
| 448 |
+
right = left + size
|
| 449 |
+
bottom = top + size
|
| 450 |
+
|
| 451 |
+
return image.crop((left, top, right, bottom))
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def generate_derm_foundation_embedding(model, image):
|
| 455 |
+
try:
|
| 456 |
+
if image.mode != 'RGB':
|
| 457 |
+
image = image.convert('RGB')
|
| 458 |
+
|
| 459 |
+
buf = BytesIO()
|
| 460 |
+
image.save(buf, format='JPEG')
|
| 461 |
+
image_bytes = buf.getvalue()
|
| 462 |
+
|
| 463 |
+
input_tensor = tf.train.Example(features=tf.train.Features(
|
| 464 |
+
feature={'image/encoded': tf.train.Feature(
|
| 465 |
+
bytes_list=tf.train.BytesList(value=[image_bytes]))
|
| 466 |
+
})).SerializeToString()
|
| 467 |
+
|
| 468 |
+
infer = model.signatures["serving_default"]
|
| 469 |
+
output = infer(inputs=tf.constant([input_tensor]))
|
| 470 |
+
|
| 471 |
+
if 'embedding' in output:
|
| 472 |
+
embedding_vector = output['embedding'].numpy().flatten()
|
| 473 |
+
else:
|
| 474 |
+
key = list(output.keys())[0]
|
| 475 |
+
embedding_vector = output[key].numpy().flatten()
|
| 476 |
+
|
| 477 |
+
return embedding_vector
|
| 478 |
+
except Exception as e:
|
| 479 |
+
raise HTTPException(status_code=500, detail=f"Error generating embedding: {str(e)}")
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
# Global model instances
|
| 483 |
+
derm_model = None
|
| 484 |
+
easi_model = None
|
| 485 |
+
model_source = "not_loaded"
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
@app.on_event("startup")
|
| 489 |
+
async def load_models():
|
| 490 |
+
"""Load models on startup"""
|
| 491 |
+
global derm_model, easi_model, model_source
|
| 492 |
+
|
| 493 |
+
# Force garbage collection before starting
|
| 494 |
+
import gc
|
| 495 |
+
gc.collect()
|
| 496 |
+
|
| 497 |
+
# Check if model exists locally
|
| 498 |
+
if not os.path.exists(DERM_FOUNDATION_PATH) or not os.path.exists(os.path.join(DERM_FOUNDATION_PATH, "saved_model.pb")):
|
| 499 |
+
print("=" * 60)
|
| 500 |
+
print("Derm Foundation model not found locally.")
|
| 501 |
+
print("Downloading from Hugging Face Hub...")
|
| 502 |
+
print("=" * 60)
|
| 503 |
+
|
| 504 |
+
# Download directly from HuggingFace Hub
|
| 505 |
+
success = download_derm_foundation_from_hf(DERM_FOUNDATION_PATH)
|
| 506 |
+
|
| 507 |
+
if success:
|
| 508 |
+
model_source = "huggingface"
|
| 509 |
+
else:
|
| 510 |
+
print("=" * 60)
|
| 511 |
+
print("ERROR: Failed to download model from HuggingFace!")
|
| 512 |
+
print("=" * 60)
|
| 513 |
+
model_source = "failed"
|
| 514 |
+
else:
|
| 515 |
+
print("✓ Derm Foundation model found locally (cached)")
|
| 516 |
+
model_source = "local_cache"
|
| 517 |
+
|
| 518 |
+
# Load Derm Foundation model
|
| 519 |
+
if os.path.exists(os.path.join(DERM_FOUNDATION_PATH, "saved_model.pb")):
|
| 520 |
+
try:
|
| 521 |
+
print(f"Loading Derm-Foundation model from: {DERM_FOUNDATION_PATH}")
|
| 522 |
+
# Force garbage collection before loading large model
|
| 523 |
+
gc.collect()
|
| 524 |
+
|
| 525 |
+
derm_model = tf.saved_model.load(DERM_FOUNDATION_PATH)
|
| 526 |
+
print(f"✓ Derm-Foundation model loaded successfully (source: {model_source})")
|
| 527 |
+
|
| 528 |
+
# Cleanup after loading
|
| 529 |
+
gc.collect()
|
| 530 |
+
except Exception as e:
|
| 531 |
+
print(f"✗ Failed to load Derm Foundation model: {str(e)}")
|
| 532 |
+
|
| 533 |
+
# Load EASI model (keep this local in your repo)
|
| 534 |
+
model_path = './trained_model/easi_severity_model_derm_foundation_individual.pkl'
|
| 535 |
+
if os.path.exists(model_path):
|
| 536 |
+
easi_model = DermFoundationNeuralNetwork()
|
| 537 |
+
success = easi_model.load_model(model_path)
|
| 538 |
+
if success:
|
| 539 |
+
print(f"✓ EASI model loaded from: {model_path}")
|
| 540 |
+
else:
|
| 541 |
+
print(f"✗ Failed to load EASI model")
|
| 542 |
+
easi_model = None
|
| 543 |
+
else:
|
| 544 |
+
print(f"✗ EASI model not found at: {model_path}")
|
| 545 |
+
|
| 546 |
+
if derm_model is None or easi_model is None:
|
| 547 |
+
print("=" * 60)
|
| 548 |
+
print("WARNING: Some models failed to load!")
|
| 549 |
+
print(f"Derm Foundation: {'✓' if derm_model else '✗'}")
|
| 550 |
+
print(f"EASI Model: {'✓' if easi_model else '✗'}")
|
| 551 |
+
print("=" * 60)
|
| 552 |
+
else:
|
| 553 |
+
print("=" * 60)
|
| 554 |
+
print("✓ All models loaded successfully!")
|
| 555 |
+
print(f"Model source: {model_source}")
|
| 556 |
+
print("=" * 60)
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
# API Endpoints
|
| 560 |
+
|
| 561 |
+
@app.get("/")
|
| 562 |
+
async def root():
|
| 563 |
+
"""Root endpoint"""
|
| 564 |
+
return {
|
| 565 |
+
"message": "EASI Severity Prediction API",
|
| 566 |
+
"version": "1.0.0",
|
| 567 |
+
"model_source": model_source,
|
| 568 |
+
"docs": "/docs",
|
| 569 |
+
"health": "/health",
|
| 570 |
+
"predict": "/predict",
|
| 571 |
+
"conditions": "/conditions"
|
| 572 |
+
}
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
@app.get("/health", response_model=HealthResponse)
|
| 576 |
+
async def health_check():
|
| 577 |
+
"""Health check endpoint"""
|
| 578 |
+
return {
|
| 579 |
+
"status": "ok" if (derm_model is not None and easi_model is not None) else "degraded",
|
| 580 |
+
"models_loaded": {
|
| 581 |
+
"derm_foundation": derm_model is not None,
|
| 582 |
+
"easi_model": easi_model is not None
|
| 583 |
+
},
|
| 584 |
+
"available_conditions": len(easi_model.mlb.classes_) if easi_model else 0,
|
| 585 |
+
"hf_token_configured": HF_TOKEN is not None,
|
| 586 |
+
"model_source": model_source
|
| 587 |
+
}
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
@app.get("/conditions", response_model=Dict[str, List[str]])
|
| 591 |
+
async def get_conditions():
|
| 592 |
+
"""Get list of available conditions"""
|
| 593 |
+
if easi_model is None:
|
| 594 |
+
raise HTTPException(status_code=503, detail="EASI model not loaded")
|
| 595 |
+
|
| 596 |
+
return {
|
| 597 |
+
"conditions": easi_model.mlb.classes_.tolist()
|
| 598 |
+
}
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
@app.post("/predict", response_model=PredictionResponse)
|
| 602 |
+
async def predict_easi(
|
| 603 |
+
file: UploadFile = File(..., description="Skin image file (JPG, JPEG, PNG)")
|
| 604 |
+
):
|
| 605 |
+
"""
|
| 606 |
+
Predict EASI scores from uploaded skin image.
|
| 607 |
+
|
| 608 |
+
- **file**: Image file (JPG, JPEG, PNG)
|
| 609 |
+
- Returns: EASI scores, component breakdown, and condition predictions
|
| 610 |
+
"""
|
| 611 |
+
|
| 612 |
+
# Validate models loaded
|
| 613 |
+
if derm_model is None or easi_model is None:
|
| 614 |
+
raise HTTPException(
|
| 615 |
+
status_code=503,
|
| 616 |
+
detail="Models not loaded. Check server logs."
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
# Validate file type
|
| 620 |
+
if not file.content_type.startswith('image/'):
|
| 621 |
+
raise HTTPException(
|
| 622 |
+
status_code=400,
|
| 623 |
+
detail="File must be an image (JPG, JPEG, PNG)"
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
try:
|
| 627 |
+
# Read and process image
|
| 628 |
+
image_bytes = await file.read()
|
| 629 |
+
original_image = Image.open(BytesIO(image_bytes)).convert('RGB')
|
| 630 |
+
original_size = original_image.size
|
| 631 |
+
|
| 632 |
+
# Process to 448x448
|
| 633 |
+
cropped_img = smart_crop_to_square(original_image)
|
| 634 |
+
processed_img = cropped_img.resize((448, 448), Image.Resampling.LANCZOS)
|
| 635 |
+
|
| 636 |
+
# Generate embedding
|
| 637 |
+
embedding = generate_derm_foundation_embedding(derm_model, processed_img)
|
| 638 |
+
|
| 639 |
+
# Make prediction
|
| 640 |
+
predictions = easi_model.predict(embedding)
|
| 641 |
+
|
| 642 |
+
if predictions is None:
|
| 643 |
+
raise HTTPException(status_code=500, detail="Prediction failed")
|
| 644 |
+
|
| 645 |
+
# Calculate EASI scores
|
| 646 |
+
easi_results, total_easi = calculate_easi_scores(predictions)
|
| 647 |
+
severity = get_severity_interpretation(total_easi)
|
| 648 |
+
|
| 649 |
+
# Format predicted conditions
|
| 650 |
+
predicted_conditions = []
|
| 651 |
+
for i, condition in enumerate(predictions['dermatologist_skin_condition_on_label_name']):
|
| 652 |
+
prob = predictions['all_condition_probabilities'][condition]
|
| 653 |
+
conf = predictions['dermatologist_skin_condition_confidence'][i]
|
| 654 |
+
weight = predictions['weighted_skin_condition_label'][condition]
|
| 655 |
+
|
| 656 |
+
# Find EASI category
|
| 657 |
+
easi_category = None
|
| 658 |
+
easi_contribution = 0
|
| 659 |
+
for cat_key, cat_info in easi_results.items():
|
| 660 |
+
for contrib in cat_info['contributing_conditions']:
|
| 661 |
+
if contrib['condition'] == condition:
|
| 662 |
+
easi_category = cat_info['name']
|
| 663 |
+
easi_contribution = contrib['individual_score']
|
| 664 |
+
break
|
| 665 |
+
|
| 666 |
+
predicted_conditions.append(ConditionPrediction(
|
| 667 |
+
condition=condition,
|
| 668 |
+
probability=float(prob),
|
| 669 |
+
confidence=float(conf),
|
| 670 |
+
weight=float(weight),
|
| 671 |
+
easi_category=easi_category,
|
| 672 |
+
easi_contribution=easi_contribution
|
| 673 |
+
))
|
| 674 |
+
|
| 675 |
+
# Summary statistics
|
| 676 |
+
summary_stats = {
|
| 677 |
+
"total_conditions": len(predicted_conditions),
|
| 678 |
+
"average_confidence": float(np.mean(predictions['dermatologist_skin_condition_confidence'])) if predicted_conditions else 0.0,
|
| 679 |
+
"average_weight": float(np.mean(list(predictions['weighted_skin_condition_label'].values()))) if predicted_conditions else 0.0,
|
| 680 |
+
"total_weight": float(sum(predictions['weighted_skin_condition_label'].values()))
|
| 681 |
+
}
|
| 682 |
+
|
| 683 |
+
# Format EASI components
|
| 684 |
+
easi_components_formatted = {
|
| 685 |
+
component: EASIComponent(
|
| 686 |
+
name=result['name'],
|
| 687 |
+
score=result['score'],
|
| 688 |
+
contributing_conditions=result['contributing_conditions']
|
| 689 |
+
)
|
| 690 |
+
for component, result in easi_results.items()
|
| 691 |
+
}
|
| 692 |
+
|
| 693 |
+
return PredictionResponse(
|
| 694 |
+
success=True,
|
| 695 |
+
total_easi_score=total_easi,
|
| 696 |
+
severity_interpretation=severity,
|
| 697 |
+
easi_components=easi_components_formatted,
|
| 698 |
+
predicted_conditions=predicted_conditions,
|
| 699 |
+
summary_statistics=summary_stats,
|
| 700 |
+
image_info={
|
| 701 |
+
"original_size": f"{original_size[0]}x{original_size[1]}",
|
| 702 |
+
"processed_size": "448x448",
|
| 703 |
+
"filename": file.filename
|
| 704 |
+
}
|
| 705 |
+
)
|
| 706 |
+
|
| 707 |
+
except HTTPException:
|
| 708 |
+
raise
|
| 709 |
+
except Exception as e:
|
| 710 |
+
raise HTTPException(
|
| 711 |
+
status_code=500,
|
| 712 |
+
detail=f"Error processing image: {str(e)}"
|
| 713 |
+
)
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
@app.exception_handler(HTTPException)
|
| 717 |
+
async def http_exception_handler(request, exc):
|
| 718 |
+
return JSONResponse(
|
| 719 |
+
status_code=exc.status_code,
|
| 720 |
+
content=ErrorResponse(
|
| 721 |
+
error=exc.detail,
|
| 722 |
+
detail=str(exc)
|
| 723 |
+
).dict()
|
| 724 |
+
)
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
if __name__ == "__main__":
|
| 728 |
+
import uvicorn
|
| 729 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|