Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#python hf-fine-tune-fleet-8.py 1 train_fleet test_fleet 1 1 saved_fleet_model
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
6 |
+
import torch
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
10 |
+
import pandas as pd
|
11 |
+
from sklearn.model_selection import train_test_split
|
12 |
+
from sklearn.linear_model import LogisticRegression
|
13 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import seaborn as sns
|
16 |
+
import numpy as np
|
17 |
+
import sys
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch.nn import CrossEntropyLoss
|
20 |
+
from sklearn.decomposition import PCA
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
import re
|
23 |
+
from datasets import load_dataset, DatasetDict
|
24 |
+
import time
|
25 |
+
import pprint
|
26 |
+
import json
|
27 |
+
from huggingface_hub import HfApi, login, upload_folder, create_repo
|
28 |
+
import os
|
29 |
+
|
30 |
+
# Load configuration file
|
31 |
+
with open('config.json', 'r') as config_file:
|
32 |
+
config = json.load(config_file)
|
33 |
+
|
34 |
+
num_args = len(config)
|
35 |
+
|
36 |
+
|
37 |
+
arg2 = config.get('arg2', '1')
|
38 |
+
arg3 = config.get('arg3', 'train_fleet')
|
39 |
+
arg4 = config.get('arg4', 'train_fleet')
|
40 |
+
arg5 = config.get('arg5', '1')
|
41 |
+
arg6 = config.get('arg6', '1')
|
42 |
+
arg7 = config.get('arg7', 'saved_fleet_model')
|
43 |
+
|
44 |
+
if num_args == 7:
|
45 |
+
# cmd args
|
46 |
+
# sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
|
47 |
+
should_train_model = arg2 # should train model?
|
48 |
+
train_file = arg3 # training file name
|
49 |
+
test_file = arg4 # eval file name
|
50 |
+
batch_size_for_trainer = int(arg5) # batch sizes to send to trainer
|
51 |
+
should_produce_eval_matrix = int(arg6) # should produce matrix?
|
52 |
+
path_to_save_trained_model_to = arg7
|
53 |
+
|
54 |
+
print(f"should train model? : {arg2}")
|
55 |
+
print (f"file to train on : {arg3}")
|
56 |
+
print (f"file to evaluate on : {arg4}")
|
57 |
+
print (f"batch size : {arg5}")
|
58 |
+
print (f"should produce eval matrix : {arg6}")
|
59 |
+
print (f"path to save trained model : {arg7}")
|
60 |
+
|
61 |
+
print(f"should train model? : {should_train_model}")
|
62 |
+
print (f"file to train on : {train_file}")
|
63 |
+
print (f"file to evaluate on : {test_file}")
|
64 |
+
print (f"batch size : {batch_size_for_trainer}")
|
65 |
+
print (f"should produce eval matrix : {should_produce_eval_matrix}")
|
66 |
+
print (f"path to save trained model : {path_to_save_trained_model_to}")
|
67 |
+
|
68 |
+
else:
|
69 |
+
print(f"Only {num_args-1} arguments after filename were passed out of 6")
|
70 |
+
sys.exit()
|
71 |
+
|
72 |
+
import os
|
73 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0" #only use 1 of my GPS (in case very weak ones are installed which would slow the training down)
|
74 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
75 |
+
|
76 |
+
|
77 |
+
if (should_train_model=='1'): #train model
|
78 |
+
|
79 |
+
#settings
|
80 |
+
model_save_path = path_to_save_trained_model_to
|
81 |
+
bias_non_fleet = 1.0
|
82 |
+
epochs_to_run = 15
|
83 |
+
|
84 |
+
file_path_train = train_file + ".csv"
|
85 |
+
file_path_test = test_file + ".csv"
|
86 |
+
|
87 |
+
# Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
|
88 |
+
file_train_df = pd.read_csv(file_path_train)
|
89 |
+
file_test_df = pd.read_csv(file_path_test)
|
90 |
+
|
91 |
+
|
92 |
+
#combine dataframes to get all possible labels/classifications for both training and evaluating - to get all possible labels (intents)
|
93 |
+
df = pd.concat([file_train_df, file_test_df], ignore_index=True)
|
94 |
+
sorted_labels = sorted(df['label'].unique())
|
95 |
+
|
96 |
+
|
97 |
+
#create labels map from unique sorted labels
|
98 |
+
label_mapping = {label: i for i, label in enumerate(sorted_labels)}
|
99 |
+
print("label mappings")
|
100 |
+
print(label_mapping)
|
101 |
+
|
102 |
+
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
103 |
+
|
104 |
+
# Tokenization - get Tokenizer for roberta-base (must match model - also roberta-base)
|
105 |
+
# tokenizer = BertTokenizer.from_pretrained('./mitra_ai_fleet_bert_tokenizer')
|
106 |
+
tokenizer = BertTokenizer.from_pretrained(repo_name, subfolder="bert_embeddings_finetune")
|
107 |
+
# I made sure to add all the ones in the training and eval data to this list
|
108 |
+
# since we are training using data that only contains the left tag - we don't need right tags added to this list
|
109 |
+
new_tokens = ['<EMPLOYEE_FIRST_NAME>', '<EMPLOYEE_LAST_NAME>','<POINT_ADDRESS>', '<TRUCK_NAME>', '<POINT_CLASS_NAME>', '<POINT_NAME>', '<TRUCK_CLASS_NAME>', '<TRUCK_STATUS_NAME>]']
|
110 |
+
tokenizer.add_tokens(new_tokens)
|
111 |
+
|
112 |
+
|
113 |
+
# Model
|
114 |
+
model = BertForSequenceClassification.from_pretrained(repo_name, subfolder="bert_embeddings_finetune", output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cuda')
|
115 |
+
# model = BertForSequenceClassification.from_pretrained('./mitra_ai_fleet_bert', output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cuda')
|
116 |
+
|
117 |
+
|
118 |
+
# Reset tokenizer size to include the new size after adding the tags to the tokenizer's tokens
|
119 |
+
model.resize_token_embeddings(len(tokenizer))
|
120 |
+
|
121 |
+
#important_tokens = ["Acura-New", "TR-9012", "TR-NEW-02"]
|
122 |
+
|
123 |
+
from datasets import Dataset, DatasetDict
|
124 |
+
from sklearn.model_selection import train_test_split
|
125 |
+
|
126 |
+
# Step 2: Convert string labels to integers
|
127 |
+
# Create a mapping from unique labels (strings) to integers
|
128 |
+
label_to_id = {label: idx for idx, label in enumerate(sorted(df["label"].unique()))}
|
129 |
+
print(label_to_id)
|
130 |
+
|
131 |
+
# Dataframes contain prompts and label names
|
132 |
+
print('before converting labels to labelIds')
|
133 |
+
pprint.pp(file_train_df)
|
134 |
+
pprint.pp(file_test_df)
|
135 |
+
|
136 |
+
# Apply the mapping to the labels to id (will swap out the label names with label id to the dataframes)
|
137 |
+
file_train_df["label"] = file_train_df["label"].map(label_to_id)
|
138 |
+
file_test_df["label"] = file_test_df["label"].map(label_to_id)
|
139 |
+
|
140 |
+
print('after swapping out label names with Ids')
|
141 |
+
pprint.pp(file_train_df)
|
142 |
+
pprint.pp(file_test_df)
|
143 |
+
|
144 |
+
# Step 3: Convert both dataframes to dictionaries
|
145 |
+
emotions_dict_train = {"text": file_train_df["text"].tolist(), "label": file_train_df["label"].tolist()}
|
146 |
+
emotions_dict_test = {"text": file_test_df["text"].tolist(), "label": file_test_df["label"].tolist()}
|
147 |
+
|
148 |
+
print('dictionaries')
|
149 |
+
pprint.pp(emotions_dict_train)
|
150 |
+
pprint.pp(emotions_dict_test)
|
151 |
+
|
152 |
+
# convert dictionaries to datasets
|
153 |
+
emotions_dataset_train = Dataset.from_dict(emotions_dict_train)
|
154 |
+
emotions_dataset_test = Dataset.from_dict(emotions_dict_test)
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
# Step 4: Split dataset into train and validation
|
159 |
+
# Create top level dictionary with both datasets (will contain two keys: one for "train" whose value is the training dataset
|
160 |
+
# and one for "validation" with test dataset)
|
161 |
+
emotions_encoded = DatasetDict({
|
162 |
+
'train': emotions_dataset_train,
|
163 |
+
'validation': emotions_dataset_test
|
164 |
+
})
|
165 |
+
|
166 |
+
|
167 |
+
# Define the tokenize function
|
168 |
+
def tokenize(batch):
|
169 |
+
return tokenizer(batch["text"], padding=True, truncation=True)
|
170 |
+
|
171 |
+
|
172 |
+
# Apply tokenization by mapping the entire dataset (both training and validation) to tokenizer function
|
173 |
+
# this will add the "input_id" and "attention_mask" columns
|
174 |
+
emotions_encoded = emotions_encoded.map(tokenize, batched=True)
|
175 |
+
emotions_encoded.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
176 |
+
|
177 |
+
# Set the model to evaluation mode (this line does not run any training or eval)
|
178 |
+
model.eval()
|
179 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
180 |
+
model.to(device)
|
181 |
+
|
182 |
+
from sklearn.metrics import accuracy_score, f1_score
|
183 |
+
|
184 |
+
# Define additional compute_metrics (used as part of error-analysis - produces "accuracy" metric which can be used in another program
|
185 |
+
# that shows any training prompts with large losses)
|
186 |
+
def compute_metrics(pred):
|
187 |
+
logits = pred.predictions[0] if isinstance(pred.predictions, tuple) else pred.predictions
|
188 |
+
preds = logits.argmax(-1)
|
189 |
+
labels = pred.label_ids
|
190 |
+
accuracy = (preds == labels).astype(float).mean()
|
191 |
+
return {"accuracy": accuracy}
|
192 |
+
|
193 |
+
|
194 |
+
training_args = TrainingArguments(
|
195 |
+
output_dir='./results',
|
196 |
+
num_train_epochs=epochs_to_run,
|
197 |
+
per_device_train_batch_size=batch_size_for_trainer,
|
198 |
+
per_device_eval_batch_size=batch_size_for_trainer,
|
199 |
+
warmup_steps=500,
|
200 |
+
learning_rate=2e-5,
|
201 |
+
weight_decay=0.02,
|
202 |
+
logging_dir='./logs',
|
203 |
+
logging_steps=10,
|
204 |
+
evaluation_strategy="epoch",
|
205 |
+
)
|
206 |
+
|
207 |
+
# notice the bias_non_float in next line (it is given a value at top of code)
|
208 |
+
# class_weights = torch.tensor([1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,bias_non_fleet,1.0,1.0]) # Replace with your actual class weights
|
209 |
+
# class_weights = class_weights.to('cuda' if torch.cuda.is_available() else 'cpu')
|
210 |
+
|
211 |
+
# This is needed b/c loss_fn is swapped out in order to use weighted loss
|
212 |
+
# Any class weights that are not equal to one will make the model more (if greater than one) or less (if less than one)sensitive to given label
|
213 |
+
class CustomTrainer(Trainer):
|
214 |
+
def compute_loss(self, model, inputs, return_outputs=False):
|
215 |
+
labels = inputs.get("labels")
|
216 |
+
outputs = model(**inputs)
|
217 |
+
logits = outputs.get("logits")
|
218 |
+
|
219 |
+
# Use cross-entropy loss with class weights
|
220 |
+
# loss_fn = torch.nn.CrossEntropyLoss(weight=class_weights)
|
221 |
+
loss_fn = torch.nn.CrossEntropyLoss()
|
222 |
+
loss = loss_fn(logits, labels)
|
223 |
+
|
224 |
+
return (loss, outputs) if return_outputs else loss
|
225 |
+
|
226 |
+
|
227 |
+
# trainer = CustomTrainer(
|
228 |
+
# model=model,
|
229 |
+
# compute_metrics=compute_metrics,
|
230 |
+
# args=training_args,
|
231 |
+
# train_dataset=emotions_encoded["train"],
|
232 |
+
# eval_dataset=emotions_encoded["validation"],
|
233 |
+
# tokenizer=tokenizer )
|
234 |
+
|
235 |
+
trainer = Trainer(
|
236 |
+
model=model,
|
237 |
+
args=training_args,
|
238 |
+
train_dataset=emotions_encoded["train"],
|
239 |
+
eval_dataset=emotions_encoded["validation"],
|
240 |
+
tokenizer=tokenizer
|
241 |
+
)
|
242 |
+
|
243 |
+
# Train the model and set timer to measure the training time
|
244 |
+
start_time = time.time()
|
245 |
+
trainer.train()
|
246 |
+
end_time = time.time()
|
247 |
+
execution_time = end_time - start_time
|
248 |
+
|
249 |
+
print(f"Execution Time: {execution_time:.2f} seconds")
|
250 |
+
|
251 |
+
# send validation prompts through the model - will be used in error-analysis matrix below
|
252 |
+
preds_output = trainer.predict(emotions_encoded["validation"])
|
253 |
+
|
254 |
+
|
255 |
+
#################This section creates a error analysis matrix
|
256 |
+
# Extract the logits from the predictions output
|
257 |
+
logits = preds_output.predictions[0] if isinstance(preds_output.predictions, tuple) else preds_output.predictions
|
258 |
+
|
259 |
+
# Get the predicted class by applying argmax on the logits
|
260 |
+
y_preds = np.argmax(logits, axis=1) #prediction
|
261 |
+
y_valid = np.array(emotions_encoded["validation"]["label"]) #labels
|
262 |
+
|
263 |
+
|
264 |
+
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
|
265 |
+
import matplotlib.pyplot as plt
|
266 |
+
import numpy as np
|
267 |
+
|
268 |
+
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
269 |
+
#num_labels2 = len(label_mapping)
|
270 |
+
|
271 |
+
print("Ypreds and valids shape")
|
272 |
+
print(y_preds.shape, y_valid.shape)
|
273 |
+
|
274 |
+
|
275 |
+
# Define the function to plot the confusion matrix
|
276 |
+
def plot_confusion_matrix_with_text_labels(y_preds, y_true, labels):
|
277 |
+
|
278 |
+
# Compute confusion matrix
|
279 |
+
cm = confusion_matrix(y_true, y_preds,normalize="true")
|
280 |
+
|
281 |
+
# Plot confusion matrix
|
282 |
+
fig, ax = plt.subplots(figsize=(len(labels), len(labels)))
|
283 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
|
284 |
+
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
|
285 |
+
|
286 |
+
# Rotate the x-axis labels to prevent overlap
|
287 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
288 |
+
|
289 |
+
# Ensure the plot is displayed
|
290 |
+
plt.title("Normalized Confusion Matrix with Text Labels")
|
291 |
+
plt.tight_layout()
|
292 |
+
plt.savefig("confusion_matrix.png")
|
293 |
+
plt.show()
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
# Get unique labels for validation data only - this will be shown in the matrix
|
298 |
+
unique_labels = sorted(set(y_valid) | set(y_preds))
|
299 |
+
id_to_label = {v: k for k, v in label_to_id.items()}
|
300 |
+
labels = [id_to_label[label] for label in unique_labels]
|
301 |
+
|
302 |
+
print ("unique_labels")
|
303 |
+
print(labels)
|
304 |
+
|
305 |
+
# Call the function with the correct labels
|
306 |
+
if(should_produce_eval_matrix == 1):
|
307 |
+
plot_confusion_matrix_with_text_labels(y_preds, y_valid, labels)
|
308 |
+
|
309 |
+
#the label mapping will be saved in the model - and retrieved by any other program using the model -
|
310 |
+
# for instance the pathway through this code used for inference only will retrieve this value
|
311 |
+
# (or like the Python program that measures poor accuracies)
|
312 |
+
model.config.label_mapping = label_mapping
|
313 |
+
|
314 |
+
# Save the model and tokenizer
|
315 |
+
model.save_pretrained(f"./{model_save_path}")
|
316 |
+
tokenizer.save_pretrained('./saved_fleet_tokenizer')
|
317 |
+
|
318 |
+
#for push repository
|
319 |
+
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
320 |
+
|
321 |
+
# Your repository name
|
322 |
+
api_token = os.getenv("hf_token") # Retrieve the API token from environment variable
|
323 |
+
|
324 |
+
if not api_token:
|
325 |
+
raise ValueError("API token not found. Please set the HF_API_TOKEN environment variable.")
|
326 |
+
|
327 |
+
# Create repository (if not already created)
|
328 |
+
api = HfApi()
|
329 |
+
create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
|
330 |
+
|
331 |
+
# Upload the model and tokenizer to the Hugging Face repository
|
332 |
+
|
333 |
+
upload_folder(
|
334 |
+
folder_path=f"{model_save_path}",
|
335 |
+
path_in_repo=f"{model_save_path}",
|
336 |
+
repo_id=repo_name,
|
337 |
+
token=api_token,
|
338 |
+
commit_message="Push fleet model",
|
339 |
+
#overwrite=True # Force overwrite existing files
|
340 |
+
)
|
341 |
+
|
342 |
+
upload_folder(
|
343 |
+
folder_path="saved_fleet_tokenizer",
|
344 |
+
path_in_repo="saved_fleet_tokenizer",
|
345 |
+
repo_id=repo_name,
|
346 |
+
token=api_token,
|
347 |
+
commit_message="Push fleet tokenizer",
|
348 |
+
#overwrite=True # Force overwrite existing files
|
349 |
+
)
|
350 |
+
|
351 |
+
else:
|
352 |
+
print('Load Pre-trained')
|
353 |
+
model_save_path = "./saved_fleet_model"
|
354 |
+
tokenizer_save_path = "./saved_fleet_tokenizer"
|
355 |
+
# RobertaTokenizer.from_pretrained(model_save_path)
|
356 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cuda')
|
357 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
358 |
+
|
359 |
+
#Define the label mappings (this must match the mapping used during training)
|
360 |
+
label_mapping = model.config.label_mapping
|
361 |
+
label_mapping_reverse = {value: key for key, value in label_mapping.items()}
|
362 |
+
|
363 |
+
|
364 |
+
#Function to classify user input
|
365 |
+
def classify_user_input():
|
366 |
+
while True:
|
367 |
+
user_input = input("Enter a command (or type 'q' to quit): ")
|
368 |
+
if user_input.lower() == 'q':
|
369 |
+
print("Exiting...")
|
370 |
+
break
|
371 |
+
|
372 |
+
# Tokenize and predict
|
373 |
+
input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cuda')
|
374 |
+
|
375 |
+
with torch.no_grad():
|
376 |
+
#attention_mask = input_encoding['attention_mask'].clone()
|
377 |
+
|
378 |
+
# Modify the attention mask to emphasize certain key tokens
|
379 |
+
for idx, token_id in enumerate(input_encoding['input_ids'][0]):
|
380 |
+
word = tokenizer.decode([token_id])
|
381 |
+
print(word)
|
382 |
+
#if word.strip() in ["point", "summarize", "oil", "maintenance"]: # Target key tokens
|
383 |
+
#attention_mask[0, idx] = 2 # Increase attention weight for these words
|
384 |
+
# else:
|
385 |
+
# attention_mask[0, idx] = 0
|
386 |
+
#print (attention_mask)
|
387 |
+
#input_encoding['attention_mask'] = attention_mask
|
388 |
+
output = model(**input_encoding, output_hidden_states=True)
|
389 |
+
# print('start-logits')
|
390 |
+
# print(output.logits)
|
391 |
+
# print('end-logits')
|
392 |
+
#print(output)
|
393 |
+
attention = output.attentions # Get attention scores
|
394 |
+
#print('atten')
|
395 |
+
#print(attention)
|
396 |
+
# Apply softmax to get the probabilities (confidence scores)
|
397 |
+
probabilities = F.softmax(output.logits, dim=-1)
|
398 |
+
|
399 |
+
# tokens = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0].cpu().numpy())
|
400 |
+
# # Display the attention visualization
|
401 |
+
# input_text = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0])
|
402 |
+
|
403 |
+
prediction = torch.argmax(output.logits, dim=1).cpu().numpy()
|
404 |
+
|
405 |
+
# Map prediction back to label
|
406 |
+
print(prediction)
|
407 |
+
predicted_label = label_mapping_reverse[prediction[0]]
|
408 |
+
|
409 |
+
|
410 |
+
print(f"Predicted intent: {predicted_label}\n")
|
411 |
+
# Print the confidence for each label
|
412 |
+
print("\nLabel Confidence Scores:")
|
413 |
+
for i, label in label_mapping_reverse.items():
|
414 |
+
confidence = probabilities[0][i].item() # Get confidence score for each label
|
415 |
+
print(f"{label}: {confidence:.4f}")
|
416 |
+
print("\n")
|
417 |
+
|
418 |
+
#Run the function
|
419 |
+
classify_user_input()
|
420 |
+
|
421 |
+
|