Reubencf commited on
Commit
fd3edf2
Β·
verified Β·
1 Parent(s): b337847

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -53
app.py CHANGED
@@ -1,70 +1,102 @@
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
 
 
 
4
 
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
 
 
14
  """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
16
  """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
 
19
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- messages.extend(history)
 
 
 
 
 
22
 
23
- messages.append({"role": "user", "content": message})
 
24
 
25
- response = ""
 
 
 
 
 
26
 
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
 
 
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
 
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
68
-
69
  if __name__ == "__main__":
 
70
  demo.launch()
 
1
+ # app.py β€” Corrected for Hugging Face ZeroGPU Spaces
2
+ # ---------------------------------------------------------------
3
+ # This version is adapted for the ZeroGPU environment by using
4
+ # the @spaces.GPU decorator.
5
+ # ---------------------------------------------------------------
6
+ import os
7
+ import torch
8
  import gradio as gr
9
+ from transformers import pipeline
10
+ import spaces # 1. Import the spaces library
11
 
12
+ # ── Configuration ──────────────────────────────────────────────────────────────
13
+ MODEL_ID = "Reubencf/gemma3-konkani"
14
+ HF_TOKEN = os.getenv("HF_TOKEN")
15
 
16
+ TITLE = "🌴 Gemma Goan Q&A Bot (ZeroGPU)"
17
+ DESCRIPTION = (
18
+ "Konkni uloi re babab.\n"
19
+ "ulo re uloi re"
20
+ )
21
+ # We define the pipeline object globally but initialize it inside the function
22
+ pipe = None
23
+
24
+ # ── Generation Function ──────────────────────────────────────────────────────
25
+ @spaces.GPU(duration=60) # 2. Decorate the function that needs the GPU
26
+ def generate_response(message, history):
27
  """
28
+ This function is called for each user message.
29
+ The @spaces.GPU decorator ensures a GPU is allocated when this runs.
30
  """
31
+ global pipe # Use the global pipe variable
32
 
33
+ # 3. Load the model inside the decorated function
34
+ # This ensures the model is loaded only when a GPU is active.
35
+ # We check if it's already loaded to avoid reloading on every call.
36
+ if pipe is None:
37
+ print(f"[Init] Loading model pipeline for the first time: {MODEL_ID}...")
38
+ try:
39
+ pipe = pipeline(
40
+ "text-generation",
41
+ model=MODEL_ID,
42
+ torch_dtype=torch.bfloat16,
43
+ device_map="auto", # This will now correctly map to the allocated GPU
44
+ token=HF_TOKEN,
45
+ )
46
+ print("[Init] Model pipeline loaded successfully.")
47
+ except Exception as e:
48
+ # If model loading fails, we can't proceed.
49
+ print(f"[Fatal] Could not load model: {e}")
50
+ return f"❌ Model failed to load: {e}"
51
 
52
+ # Format the conversation history
53
+ conversation = []
54
+ for user_msg, assistant_msg in history:
55
+ conversation.append({"role": "user", "content": user_msg})
56
+ if assistant_msg:
57
+ conversation.append({"role": "assistant", "content": assistant_msg})
58
 
59
+ # Add the current user's message
60
+ conversation.append({"role": "user", "content": message})
61
 
62
+ # Apply the chat template
63
+ prompt = pipe.tokenizer.apply_chat_template(
64
+ conversation,
65
+ tokenize=False,
66
+ add_generation_prompt=True
67
+ )
68
 
69
+ # Generate the response
70
+ outputs = pipe(
71
+ prompt,
72
+ max_new_tokens=256, # It's good practice to set a max token limit
73
+ do_sample=True,
74
+ temperature=0.7,
75
+ top_k=50,
76
+ top_p=0.95
77
+ )
78
+
79
+ # Extract only the newly generated text
80
+ response = outputs[0]["generated_text"]
81
+ new_response = response[len(prompt):].strip()
82
 
83
+ return new_response
 
84
 
85
+ # ── UI ────────────────────────────────────────────────────────────────────────
86
+ examples = [
87
+ "Translate From English to Devnagri Konkani: what is color?",
88
+ "ΰ€˜ΰ€°ΰ€Ύΰ€‚ΰ€€ ΰ€΅ΰ€Ώΰ€œΰ₯‡ΰ€šΰ₯‹ ΰ€΅ΰ€Ύΰ€ͺΰ€° ΰ€‰ΰ€£ΰ₯‹ ΰ€•ΰ€°ΰ€ͺΰ€Ύΰ€šΰ₯€ ΰ€―ΰ₯‡ΰ€΅ΰ€œΰ€£ ΰ€€ΰ€―ΰ€Ύΰ€° ΰ€•ΰ€°ΰ€ͺ.",
89
+ ]
90
 
91
+ demo = gr.ChatInterface(
92
+ fn=generate_response,
93
+ title=TITLE,
94
+ description=DESCRIPTION,
95
+ examples=examples,
96
+ theme="soft",
 
 
 
 
 
 
 
 
 
 
 
 
97
  )
98
 
99
+ # ── Launch ────────────────────────────────────────────────────────────────────
 
 
 
 
 
100
  if __name__ == "__main__":
101
+ print("πŸš€ Starting Gradio app for ZeroGPU...")
102
  demo.launch()