mrfakename commited on
Commit
8b5626c
·
1 Parent(s): d9dff52

Add voices pickle file

Browse files
Files changed (2) hide show
  1. compute.py +138 -0
  2. voices.pkl +3 -0
compute.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from cached_path import cached_path
2
+
3
+ # from dp.phonemizer import Phonemizer
4
+ print("NLTK")
5
+ import nltk
6
+ nltk.download('punkt')
7
+ print("SCIPY")
8
+ from scipy.io.wavfile import write
9
+ print("TORCH STUFF")
10
+ import torch
11
+ print("START")
12
+ torch.manual_seed(0)
13
+ torch.backends.cudnn.benchmark = False
14
+ torch.backends.cudnn.deterministic = True
15
+
16
+ import random
17
+ random.seed(0)
18
+
19
+ import numpy as np
20
+ np.random.seed(0)
21
+
22
+ # load packages
23
+ import time
24
+ import random
25
+ import yaml
26
+ from munch import Munch
27
+ import numpy as np
28
+ import torch
29
+ from torch import nn
30
+ import torch.nn.functional as F
31
+ import torchaudio
32
+ import librosa
33
+ from nltk.tokenize import word_tokenize
34
+
35
+ from models import *
36
+ from utils import *
37
+ from text_utils import TextCleaner
38
+ textclenaer = TextCleaner()
39
+
40
+
41
+ to_mel = torchaudio.transforms.MelSpectrogram(
42
+ n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
43
+ mean, std = -4, 4
44
+
45
+ def length_to_mask(lengths):
46
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
47
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
48
+ return mask
49
+
50
+ def preprocess(wave):
51
+ wave_tensor = torch.from_numpy(wave).float()
52
+ mel_tensor = to_mel(wave_tensor)
53
+ mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
54
+ return mel_tensor
55
+
56
+ def compute_style(path):
57
+ wave, sr = librosa.load(path, sr=24000)
58
+ audio, index = librosa.effects.trim(wave, top_db=30)
59
+ if sr != 24000:
60
+ audio = librosa.resample(audio, sr, 24000)
61
+ mel_tensor = preprocess(audio).to(device)
62
+
63
+ with torch.no_grad():
64
+ ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
65
+ ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
66
+
67
+ return torch.cat([ref_s, ref_p], dim=1)
68
+
69
+ device = 'cpu'
70
+ if torch.cuda.is_available():
71
+ device = 'cuda'
72
+ elif torch.backends.mps.is_available():
73
+ print("MPS would be available but cannot be used rn")
74
+ # device = 'mps'
75
+
76
+
77
+
78
+ # config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
79
+ config = yaml.safe_load(open(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/config.yml"))))
80
+
81
+ # load pretrained ASR model
82
+ ASR_config = config.get('ASR_config', False)
83
+ ASR_path = config.get('ASR_path', False)
84
+ text_aligner = load_ASR_models(ASR_path, ASR_config)
85
+
86
+ # load pretrained F0 model
87
+ F0_path = config.get('F0_path', False)
88
+ pitch_extractor = load_F0_models(F0_path)
89
+
90
+ # load BERT model
91
+ from Utils.PLBERT.util import load_plbert
92
+ BERT_path = config.get('PLBERT_dir', False)
93
+ plbert = load_plbert(BERT_path)
94
+
95
+ model_params = recursive_munch(config['model_params'])
96
+ model = build_model(model_params, text_aligner, pitch_extractor, plbert)
97
+ _ = [model[key].eval() for key in model]
98
+ _ = [model[key].to(device) for key in model]
99
+
100
+ # params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
101
+ params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
102
+ params = params_whole['net']
103
+
104
+ for key in model:
105
+ if key in params:
106
+ print('%s loaded' % key)
107
+ try:
108
+ model[key].load_state_dict(params[key])
109
+ except:
110
+ from collections import OrderedDict
111
+ state_dict = params[key]
112
+ new_state_dict = OrderedDict()
113
+ for k, v in state_dict.items():
114
+ name = k[7:] # remove `module.`
115
+ new_state_dict[name] = v
116
+ # load params
117
+ model[key].load_state_dict(new_state_dict, strict=False)
118
+ # except:
119
+ # _load(params[key], model[key])
120
+ _ = [model[key].eval() for key in model]
121
+
122
+ from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
123
+
124
+ sampler = DiffusionSampler(
125
+ model.diffusion.diffusion,
126
+ sampler=ADPM2Sampler(),
127
+ sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
128
+ clamp=False
129
+ )
130
+ voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4']
131
+ voices = {}
132
+ # todo: cache computed style, load using pickle
133
+ for v in voicelist:
134
+ print(f"Loading voice {v}")
135
+ voices[v] = compute_style(f'voices/{v}.wav')
136
+ import pickle
137
+ with open('voices.pkl', 'wb') as f:
138
+ pickle.dump(voices, f)
voices.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58e11e1d6726c8992f5325aca8b381ad37facbd7380ebb5f5e04d77a017b4ee3
3
+ size 10739